期刊文献+
共找到904篇文章
< 1 2 46 >
每页显示 20 50 100
A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential EquationModel for HIV/AIDS with Treatment Compartment
1
作者 Gamze Yıldırım Suayip Yüzbası 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期281-310,共30页
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen... In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct. 展开更多
关键词 Collocation method fractional differential equations HIV/AIDS epidemic model Pell-Lucas polynomials
下载PDF
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
2
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu polynomials Collocation Method Integro-Differential equations Linear equation Systems Matrix equations
下载PDF
Linear Functional Equations and Twisted Polynomials
3
作者 Moumouni Djassibo Woba 《Journal of Applied Mathematics and Physics》 2024年第4期1459-1471,共13页
A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view... A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms. 展开更多
关键词 Functional equations Twisted polynomials RINGS MORPHISMS Euclidian Division
下载PDF
THE GROWTH OF SOLUTIONS TO HIGHER ORDER DIFFERENTIAL EQUATIONS WITH EXPONENTIAL POLYNOMIALS AS ITS COEFFICIENTS 被引量:1
4
作者 黄志波 罗敏伟 陈宗煊 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期439-449,共11页
By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn... By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn-1(z)f((n-1))+…+P0(z)f=0 are of infinite order.An exponential polynomial coefficient plays a key role in these results. 展开更多
关键词 differential equations entire solution exponential polynomial GROWTH
下载PDF
Finite Element Orthogonal Collocation Approach for Time Fractional Telegraph Equation with Mamadu-Njoseh Polynomials
5
作者 Ebimene James Mamadu Henrietta Ify Ojarikre Edith Omamuyovwi Maduku 《Journal of Applied Mathematics and Physics》 2023年第9期2585-2596,共12页
Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a ... Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature. 展开更多
关键词 Sobolev Space Finite Element Method Mamadu-Njoseh polynomials Orthogonal Collocation Method Telegraph equation
下载PDF
On the Numerical Solution of Singular Integral Equation with Degenerate Kernel Using Laguerre Polynomials
6
作者 Khadeejah Sultan Alroogy Musa Adam Aigo 《American Journal of Computational Mathematics》 2023年第1期153-160,共8页
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function... In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method. 展开更多
关键词 Singular Integral equation Projection Method Galerkin Method La-guerre polynomials
下载PDF
A Novel Accurate Method forMulti-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains
7
作者 Tao Hu Cheng Huang +2 位作者 Sergiy Reutskiy Jun Lu Ji Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1521-1548,共28页
Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic ... Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency. 展开更多
关键词 Müntz polynomial basis backward substitutionmethod collocationmethod meshlessmethod fractional equation
下载PDF
Two-Stream Approximation to the Radiative Transfer Equation:A New Improvement and Comparative Accuracy with Existing Methods
8
作者 F.Momo TEMGOUA L.Akana NGUIMDO DNJOMO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期278-292,共15页
Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other m... Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper. 展开更多
关键词 Radiative Transfer equation two-stream method Legendre polynomial optical thickness moments of specific intensity conversion function TRANSMITTANCE reflectance
下载PDF
High Order IMEX Stochastic Galerkin Schemes for Linear Transport Equation with Random Inputs and Diffusive Scalings
9
作者 Zheng Chen Lin Mu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期325-339,共15页
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g... In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property. 展开更多
关键词 Stochastic Galerkin scheme linear transport equations generalized polynomial approach stochastic asymptotic-preserving property
下载PDF
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
10
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 Fractional Differential equations System of Fractional Order BVPs Weighted Residual Methods Modified Legendre polynomials
下载PDF
The Center and the Fine Focus for a Class of Quartic Polynomial Poincare Equations 被引量:2
11
作者 TIANDe-sheng ZENGXian-wu YUChang-chun LIPei-luan 《Wuhan University Journal of Natural Sciences》 CAS 2004年第6期867-870,共4页
We study a class of quartic polynomial Poincare equations by applying a recurrence formula of focal value. We give the necessary and sufficient conditions for the origin to be a center, and prove that the order of fin... We study a class of quartic polynomial Poincare equations by applying a recurrence formula of focal value. We give the necessary and sufficient conditions for the origin to be a center, and prove that the order of fine focus at the origin for this class of equations is at most 6. Key words quartic polynomial Poincare equation - center - fine focus - order CLC number O 175. 12 Foundation item: Supported by the National Natural Science Foundation of China (19531070)Biography: TIAN De-sheng (1966-), male, Ph. D candidate, research direction: qualitative theory of differential equation. 展开更多
关键词 quartic polynomial Poincare equation CENTER fine focus order
下载PDF
ORTHOGONAL POLYNOMIALS AND DETERMINANT FORMULAS OF FUNCTION-VALUED PADE-TYPE APPROXIMATION USING FOR SOLUTION OF INTEGRAL EQUATIONS 被引量:2
12
作者 顾传青 潘宝珍 吴蓓蓓 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第6期853-860,共8页
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s... To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given. 展开更多
关键词 generalized linear functional function-valued Padé-type approximation Fredholm integral equation orthogonal polynomial determinant formula
下载PDF
TAYLOR POLYNOMIAL STEPWISE REFINEMENTALGORITHM FOR LIE AND HIGH SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS 被引量:1
13
作者 张鸿庆 朝鲁 唐立民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第3期213-220,共8页
In this article, based on the Taylor expansions of generating functions and stepwise refinement procedure, authors suggest a algorithm for finding the Lie and high (generalized) symmetries of partial differential equa... In this article, based on the Taylor expansions of generating functions and stepwise refinement procedure, authors suggest a algorithm for finding the Lie and high (generalized) symmetries of partial differential equations (PDEs). This algorithm transforms the problem having to solve over-determining PDEs commonly encountered and difficulty part in standard methods into one solving to algebraic equations to which one easy obtain solution. so, it reduces significantly the difficulties of the problem and raise computing efficiency. The whole procedure of the algorithm is carried out automatically by using any computer algebra system. In general, this algorithm can yields many more important symmetries for PDEs. 展开更多
关键词 Lie groups high symmetries Taylor polynomial computer algebra determining equations stepwise refinement
下载PDF
HERMITE MATRIX POLYNOMIALS AND SECOND ORDER MATRIX DIFFERENTIAL EQUATIONS 被引量:6
14
作者 L.Jódar R.Company 《Analysis in Theory and Applications》 1996年第2期20-30,共11页
In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermit... In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given. 展开更多
关键词 exp HERMITE MATRIX polynomialS AND SECOND ORDER MATRIX DIFFERENTIAL equationS
下载PDF
A polynomial Expansion Method and New General Solitary Wave Solutions to KS Equation 被引量:2
15
作者 PENGYan-Ze 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第6期641-642,共2页
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolu... Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation. 展开更多
关键词 KS equation solitary wave solution polynomial expansion method
下载PDF
Solution to Polynomial Equations, a New Approach 被引量:1
16
作者 Fleur T. Tehrani 《Applied Mathematics》 2020年第2期53-66,共14页
A new approach for solving polynomial equations is presented in this study. Two techniques for solving quartic equations are described that are based on a new method which was recently developed for solving cubic equa... A new approach for solving polynomial equations is presented in this study. Two techniques for solving quartic equations are described that are based on a new method which was recently developed for solving cubic equations. Higher order polynomial equations are solved by using a new and efficient algorithmic technique. The proposed methods rely on initially identifying the vicinities of the roots and do not require the use of complicated formulas, roots of complex numbers, or application of graphs. It is proposed that under the stated conditions, the methods presented provide efficient techniques to find the roots of polynomial equations. 展开更多
关键词 polynomial SOLUTIONS QUARTIC equationS COMPUTER ALGORITHMS
下载PDF
New Implementation of Legendre Polynomials for Solving Partial Differential Equations 被引量:1
17
作者 Ali Davari Abozar Ahmadi 《Applied Mathematics》 2013年第12期1647-1650,共4页
In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear... In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method. 展开更多
关键词 LEGENDRE polynomialS PARTIAL Differential equationS COLLOCATION Method
下载PDF
Chebyshev Polynomials for Solving a Class of Singular Integral Equations 被引量:1
18
作者 Samah M. Dardery Mohamed M. Allan 《Applied Mathematics》 2014年第4期753-764,共12页
This paper is devoted to studying the approximate solution of singular integral equations by means of Chebyshev polynomials. Some examples are presented to illustrate the method.
关键词 SINGULAR INTEGRAL equations CAUCHY KERNEL CHEBYSHEV polynomialS Weight Functions
下载PDF
Numerical Solution of Integro-Differential Equations with Local Polynomial Regression 被引量:1
19
作者 Liyun Su Tianshun Yan +2 位作者 Yanyong Zhao Fenglan Li Ruihua Liu 《Open Journal of Statistics》 2012年第3期352-355,共4页
In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local p... In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local polynomial regression (LPR) method. The numerical solution shows that this method is powerful in solving integro-differential equations. The method will be tested on three model problems in order to demonstrate its usefulness and accuracy. 展开更多
关键词 Integro-Differential equationS Local polynomial Regression KERNEL FUNCTIONS
下载PDF
Non-hypergeometric Type of Polynomials and Solutions of Schrodinger Equation with Position-Dependent Mass 被引量:1
20
作者 鞠国兴 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期235-240,共6页
Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eige... Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed. 展开更多
关键词 SchrSdinger equation position-dependent mass EIGENFUNCTION EIGENVALUE coordinate transfor-mation method polynomials solution
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部