In this greenhouse experiment, we investigated the effects of two constant groundwater levels: 10 cm groundwater level (GW-10) and 40 cm groundwater level (GW-40) and one change groundwater level, which was 40-10-40 c...In this greenhouse experiment, we investigated the effects of two constant groundwater levels: 10 cm groundwater level (GW-10) and 40 cm groundwater level (GW-40) and one change groundwater level, which was 40-10-40 cm (GW-40-10-40) on Cadmium (Cd) uptake and seed yield of Soybean plant in Cd contaminated soils (1.57 mg·kg-1). The experimental soil layer was made with gravel layer (14 cm), non-polluted soil (15 cm) and polluted soil (25 cm). The redox potential of every soil layer was measured from sowing to harvesting. The soil layer (10 – 40 cm) of GW-10 was always in reduction condition and that of GW-40 was always in oxidation condition. First 50 days of GW 40-10-40 were in oxidation and next 50 days in reduction and final 20 days again returned in oxidation condition. Soybean seed Cd concentration was significantly highest in GW-40-10-40 (1.16 ± 0.13 mg·kg-1) and lowest in GW-40 (0.81 ± 0.12 mg·kg-1). Cd concentration of stem was found significantly higher in GW-40 (1.7 ± 0.2 mg·kg-1) than GW-10 (0.91 ± 0.08 mg·kg-1) and GW-40-10-40 (1.28 ± 0.13 mg·kg-1). There was no significant difference in root Cd concentration among these 3 treatments. Main stem height of soybean plant and 100 seed weight of GW-40 were significantly higher than those of GW-10. The result revealed that, soil redox condition is an important factor for Cd uptake in soybean plant and seed yield of soybean. This study will help to manage the farming process more appropriately with the aim of minimizing uptake of Cd and other toxic metals in grain crops.展开更多
Well-exposed Lijiatuo Section was chosen to explore the temporal evolution and controls of the oceanic redox state, primary productivity and seawater sulfate levels during the Cambrian Series 1-2, South China. This se...Well-exposed Lijiatuo Section was chosen to explore the temporal evolution and controls of the oceanic redox state, primary productivity and seawater sulfate levels during the Cambrian Series 1-2, South China. This section consists of Xiaoyanxi Formation(Fm.) mudstones and Liuchapo Fm. cherts that deposited in the slope and basin environment. Five oxic-anoxic cycles were identified based on V/Sc, Th/U and the enrichment factors of Mo, U, V, Ni and Cu. The Middle-Upper Liuchapo Fm. and the Middle Xiaoyanxi Fm. were deposited under oxic-suboxic conditions, and the rest of the strata were under anoxic conditions. The Re/Mo ratio demonstrated that the oxic-suboxic conditions in the Middle Xiaoyanxi Fm. were accompanied by transient sulfidic conditions, and the rest of the section was underanoxic and non-sulfidic conditions. All the TOC and the enrichment factors of Ba, Ni, Cu, Zn and Cd demonstrated that both the sinking and burial flux of organic matter(OM) in Liuchapo Fm. were lower than that in the overlying Xiaoyanxi Fm. The highest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared at its lower parts; however, the lowest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared in its middle parts. TOC/TS, TS and the vertical trend of δ^(34)S_(py) demonstrated that the seawater was dominated by low oceanic sulfate levels, which resulted in the absence of free H_2S. The rise of the atmospheric oxygen content may be the principal driver for the associated, transient suboxic-oxic and nearly sulfidic environment in the middle Xiaoyanxi Fm.展开更多
文摘In this greenhouse experiment, we investigated the effects of two constant groundwater levels: 10 cm groundwater level (GW-10) and 40 cm groundwater level (GW-40) and one change groundwater level, which was 40-10-40 cm (GW-40-10-40) on Cadmium (Cd) uptake and seed yield of Soybean plant in Cd contaminated soils (1.57 mg·kg-1). The experimental soil layer was made with gravel layer (14 cm), non-polluted soil (15 cm) and polluted soil (25 cm). The redox potential of every soil layer was measured from sowing to harvesting. The soil layer (10 – 40 cm) of GW-10 was always in reduction condition and that of GW-40 was always in oxidation condition. First 50 days of GW 40-10-40 were in oxidation and next 50 days in reduction and final 20 days again returned in oxidation condition. Soybean seed Cd concentration was significantly highest in GW-40-10-40 (1.16 ± 0.13 mg·kg-1) and lowest in GW-40 (0.81 ± 0.12 mg·kg-1). Cd concentration of stem was found significantly higher in GW-40 (1.7 ± 0.2 mg·kg-1) than GW-10 (0.91 ± 0.08 mg·kg-1) and GW-40-10-40 (1.28 ± 0.13 mg·kg-1). There was no significant difference in root Cd concentration among these 3 treatments. Main stem height of soybean plant and 100 seed weight of GW-40 were significantly higher than those of GW-10. The result revealed that, soil redox condition is an important factor for Cd uptake in soybean plant and seed yield of soybean. This study will help to manage the farming process more appropriately with the aim of minimizing uptake of Cd and other toxic metals in grain crops.
基金supported by the National Key R&D Program of China (2021YFA0718200)the National Natural Science Foundation of China (42103006, 42103007)+2 种基金the Pre-research Project on Civil Aerospace Technologies (D020202) of the Chinese National Space Administrationthe Natural Science Foundation of Anhui Province (2108085QD163)the Fundamental Research Funds for the Central Universities of China (WK3410000019, WK2080000152, WK2080000154)。
基金supported by China National Program on Key Basic Research Project (973 Program) (No. 2011CB808800)China National Funds for Distinguished Young Scientists (No. 41125009)by NSFC (Nos. 41290260, 41502023)
文摘Well-exposed Lijiatuo Section was chosen to explore the temporal evolution and controls of the oceanic redox state, primary productivity and seawater sulfate levels during the Cambrian Series 1-2, South China. This section consists of Xiaoyanxi Formation(Fm.) mudstones and Liuchapo Fm. cherts that deposited in the slope and basin environment. Five oxic-anoxic cycles were identified based on V/Sc, Th/U and the enrichment factors of Mo, U, V, Ni and Cu. The Middle-Upper Liuchapo Fm. and the Middle Xiaoyanxi Fm. were deposited under oxic-suboxic conditions, and the rest of the strata were under anoxic conditions. The Re/Mo ratio demonstrated that the oxic-suboxic conditions in the Middle Xiaoyanxi Fm. were accompanied by transient sulfidic conditions, and the rest of the section was underanoxic and non-sulfidic conditions. All the TOC and the enrichment factors of Ba, Ni, Cu, Zn and Cd demonstrated that both the sinking and burial flux of organic matter(OM) in Liuchapo Fm. were lower than that in the overlying Xiaoyanxi Fm. The highest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared at its lower parts; however, the lowest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared in its middle parts. TOC/TS, TS and the vertical trend of δ^(34)S_(py) demonstrated that the seawater was dominated by low oceanic sulfate levels, which resulted in the absence of free H_2S. The rise of the atmospheric oxygen content may be the principal driver for the associated, transient suboxic-oxic and nearly sulfidic environment in the middle Xiaoyanxi Fm.