This paper reviews the recent progress in the electron transfer and interfacial behavior of redox proteins. Significant achievements in the relevant fields are summarized including the direct electron transfer between...This paper reviews the recent progress in the electron transfer and interfacial behavior of redox proteins. Significant achievements in the relevant fields are summarized including the direct electron transfer between proteins and electrodes, the thermodynamic and kinetic properties, catalytic activities and activity regulation of the redox proteins. It has been demonstrated that the electrochemical technique is an effective tool for protein studies, especially for probing into the electron transfer and interfacial behavior of redox proteins.展开更多
Recent studies have shown that tea polyphenols can cross the blood-brain barrier, inhibit apoptosis and play a neuroprotective role against cerebral ischemia. Furthermore, tea polyphenols can decrease DNA damage cause...Recent studies have shown that tea polyphenols can cross the blood-brain barrier, inhibit apoptosis and play a neuroprotective role against cerebral ischemia. Furthermore, tea polyphenols can decrease DNA damage caused by free radicals. We hypothesized that tea polyphenols repair DNA damage and inhibit neuronal apoptosis during global cerebral ischemia/reperfusion. To test this hypothesis, we employed a rat model of global cerebral ischemia/reperfusion. We demonstrated that intraperitoneal injection of tea polyphenols immediately after reperfusion significantly reduced apoptosis in the hippocampal CA1 region; this effect started 6 hours following reperfusion. Immunohistochemical staining showed that tea polyphenols could reverse the ischemia/reperfusion-induced reduction in the expression of DNA repair proteins, X-ray repair cross-complementing protein 1 and apudnic/apyrimidinic endonuclease/redox factor-1 starting at 2 hours. Both effects lasted at least 72 hours. These experimental findings suggest that tea polyphenols promote DNA damage repair and protect against apoptosis in the brain.展开更多
基金support from the National Natural Science Foundation of China (Grant Nos. 90406005 & 20575028) the Program for New Century Excellent Talents in University,the Chinese Ministry of Education (Grant No. NCET-04-0452)
文摘This paper reviews the recent progress in the electron transfer and interfacial behavior of redox proteins. Significant achievements in the relevant fields are summarized including the direct electron transfer between proteins and electrodes, the thermodynamic and kinetic properties, catalytic activities and activity regulation of the redox proteins. It has been demonstrated that the electrochemical technique is an effective tool for protein studies, especially for probing into the electron transfer and interfacial behavior of redox proteins.
基金supported by the National Natural Science Foundation of China, No. 30571790
文摘Recent studies have shown that tea polyphenols can cross the blood-brain barrier, inhibit apoptosis and play a neuroprotective role against cerebral ischemia. Furthermore, tea polyphenols can decrease DNA damage caused by free radicals. We hypothesized that tea polyphenols repair DNA damage and inhibit neuronal apoptosis during global cerebral ischemia/reperfusion. To test this hypothesis, we employed a rat model of global cerebral ischemia/reperfusion. We demonstrated that intraperitoneal injection of tea polyphenols immediately after reperfusion significantly reduced apoptosis in the hippocampal CA1 region; this effect started 6 hours following reperfusion. Immunohistochemical staining showed that tea polyphenols could reverse the ischemia/reperfusion-induced reduction in the expression of DNA repair proteins, X-ray repair cross-complementing protein 1 and apudnic/apyrimidinic endonuclease/redox factor-1 starting at 2 hours. Both effects lasted at least 72 hours. These experimental findings suggest that tea polyphenols promote DNA damage repair and protect against apoptosis in the brain.