During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtr...During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.展开更多
Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performa...Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.展开更多
Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior micr...Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.展开更多
Using K2S2O8-Na2SO3 as the redox initiation system,a hydrogen-bond-association-based dodecyl methacrylate system associative anti-shear drag reducer was synthesised by standard emulsion polymerisation.The reaction pro...Using K2S2O8-Na2SO3 as the redox initiation system,a hydrogen-bond-association-based dodecyl methacrylate system associative anti-shear drag reducer was synthesised by standard emulsion polymerisation.The reaction process was simple and gentle as well as safe and stable.Molecular design was carried out using molecular dynamics simulation methods.The results of infrared spectroscopy,thermogravimetric analysis,differential scanning calorimetry,gel chromatography,and laser light scattering showed that the reaction polymerisation was relatively complete,the product was uniform,the molecular weight distribution was controllable,and the synthesised polymer had good flexibility.The donor lauryl methacrylate-styrene-methacrylic acid(LMA-St-MAA)and acceptor lauryl methacrylate-styrene-dimethylaminoethyl methacrylate(LMA-St-DMA)polymers had an associative intermolecular interaction force,which increased the molecular cluster size of the associative system complex.The complex had good shear resistance,and the test results of the tube pump shear test showed that the synthesised associative oil-soluble polymer drag reduction system exhibited better drag reduction rate performance than poly-α-olefins over repeated cycles.The research results provide a reference plan for minimising the number of station-to-station inputs,thereby ensuring the stability of oil pipelines and reducing transportation costs.展开更多
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the...Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.展开更多
The impact of sustainable reduced tillage (RT) on the physical properties of soil is well documented worldwide; however, there is no precise information about the influence of long-term RT or no-till (NT) on the s...The impact of sustainable reduced tillage (RT) on the physical properties of soil is well documented worldwide; however, there is no precise information about the influence of long-term RT or no-till (NT) on the soils at the boundary for grain maize-growing in the semi-humid subarctic climate conditions of the Baltic states, especially on the formation of a hard- ened upper soil layer (10-15 cm in depth) --"loosening hardpan". This study was carried out at the Research Station of Aleksandras Stulginskis University, Lithuania from 2009-2012. The investigations were based on a long-term (since 1988) field experiment. The aim of the investigation was to ascertain the influence of reduced primary tillage on the main soil's physical properties. This study examined soils that were deep ploughing (DP), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC), and no-till (NT). Reducing the tillage intensity to NT had no significant effect on the structural soil's composition; however, the stability of the structure of the 〉1 and 〉0.25 mm-size fractions was significantly higher in the non-reversibly tilled (DC, SC) and NT plots. The penetration resistance of the DP soils was less after primary tillage and wintering, and became similar to the NT plots at the end of the maize growth season. After primary tillage and wintering, the soil moisture content in the upper soil layer (0-5 cm depth) of the NT plots was 17-49 and 16-18% higher than that in the DP. Long-term reduction of primary tillage up to NT generally had no significant effect on the moisture content and soil bulk density of the 0-10 and 10-20 cm layers. The results showed that long-term RT stabilized the physical quality of soil. Less soil penetration resistance was established in the DP plots compared to both RT and NT, however, indicators of the formation of a uniform "loosening hardpan" layer were not found. It is summarized that long-term RT or NT systems stabilize, or may increase, the physical quality of soil in crop cultivation with low inter-row coverage potential (maize), and could be applied in semi-humid subarctic climate conditions as a good option to prevent soil degradation.展开更多
Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of b...Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically. Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.展开更多
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r...The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.展开更多
Magnesium(Mg) has attracted wide interest in orthopedic applications as they exhibit great biodegradability and strong biocompatibility,while corrosion is the main concern for Mg that should be addressed prior to biom...Magnesium(Mg) has attracted wide interest in orthopedic applications as they exhibit great biodegradability and strong biocompatibility,while corrosion is the main concern for Mg that should be addressed prior to biomedical applications. In this work, ZM31(Mg-3Zn-1Mn)/x RGO(x = 0, 0.5, 1 and 1.5 wt%) biocomposites were synthesized by semi-powder metallurgy method. The results showed that the RGO acting as an effective reinforcing filler to prevent deformation and showed better compressive strength(282.3 ± 9 MPa) and revealed enhancement in failure Strain(7.8 ± 2.1%) at 1 wt% RGO concentration compared to Mg alloy(244.5 ± 9 MPa and 7.1 ± 1.5%respectively). Moreover, fracture analysis indicated a more ductile fracture of the nanocomposites after the incorporation of RGO. Crack bridging, crack deflection and crack branching are dominant mechanisms for reinforcement of Mg-based containing RGO. Mg composites containing 0.5 wt% RGO showed a low corrosion rate(2.75 mm/year), while more incorporation of RGO resulted in an increased corrosion rate(4.38 mm/year). In addition, the degradation rate of ZM31 alloy(2.57 mg·cm-2·d-1) obviously decreased with the addition of 0.5 wt%RGO(1.84 mg·cm-2·d-1) in the SBF. Besides, continuous apatite layers were created on the composites in the SBF solution. Also, the cell culture examinations showed good cell viability and adhesion on composites with 0.5 and 1 wt% RGO, which was demonstrated by the SEM and MTT assay The alkaline phosphatase(ALP) activity of the ZM3–0.5RGO composite was considerably higher than that of ZM31matrix alloy in 24 h and 48 h, implying higher osteoblastic differentiation. The antibacterial behavior toward both bacteria(E. coli and S.aureus) exhibited that escalating RGO concentration in Mg-matrix composites leads to further inhibition of bacteria growth. These findings suggested that ZM31–0.5RGO biocomposite could be a more promising candidate for orthopedic implants.展开更多
Globally, about one third of all food produced is wasted every year. Losses take place along the entire food chain and they need to be analyzed and monitored due to their impact on the development of the food sector. ...Globally, about one third of all food produced is wasted every year. Losses take place along the entire food chain and they need to be analyzed and monitored due to their impact on the development of the food sector. In addition to quantitative losses, irrational use of food contributes to the depletion of natural resources (water and energy) and poses a threat to the environment, constituting a barrier to sustainable development of the food sector. The aim of this study was to establish the causes and effects of food waste throughout the food supply chain and to propose mitigation measures. Identified causes of food waste can be divided into two groups. The first are those that lead to the fact that food cannot be consumed (e.g., inadequate conditions of agricultural production and interruption of the cold chain). In the second, those that cause food cannot be sold (e.g., wrong label and wrong product weight). Most of the identified causes of food waste can be avoided (e.g., by improving the conditions of production, storage, and transportation). However, it is not possible to eliminate all potential errors leading to food waste. It is therefore necessary to consider what action to take to use food as intended. One way to reduce losses and food waste can be re-distributing to charity.展开更多
Graphene-based resistive random access memory (GRRAM) has grasped researchers' attention due to its merits com- pared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can...Graphene-based resistive random access memory (GRRAM) has grasped researchers' attention due to its merits com- pared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can be divided into two categories: graphene RRAM and graphene oxide (GO)/reduced graphene oxide (rGO) RRAM. Using graphene as the electrode, GRRAM can own many good characteristics, such as low power consumption, higher density, transparency, SET voltage modulation, high uniformity, and so on. Graphene flakes sandwiched between two dielectric layers can lower the SET voltage and achieve multilevel switching. Moreover, the GRRAM with rGO and GO as the dielectric or electrode can be simply fabricated. Flexible and high performance RRAM and GO film can be modified by adding other materials layer or making a composite with polymer, nanoparticle, and 2D materials to further improve the performance. Above all, GRRAM shows huge potential to become the next generation memory.展开更多
Graphene is mainly implemented by these methods: exfoliating, unzipping of carbon nanotubes, chemical vapour deposition, epitaxial growth and the reduction of graphene oxide. The latter option has the advantage of low...Graphene is mainly implemented by these methods: exfoliating, unzipping of carbon nanotubes, chemical vapour deposition, epitaxial growth and the reduction of graphene oxide. The latter option has the advantage of low cost and precision. However, reduced graphene oxide(rGO) contains hydrogen and/or oxygen atoms hence the structure and properties of the rGO and intrinsic graphene are different. Considering the advantages of the implementation and utilization of rGO, voltage-dependent electronic transport properties of several rGO samples with various coverage ratios are investigated in this work. Ab initio simulations based on density functional theory combined with non-equilibrium Green's function formalism are used to obtain the current–voltage characteristics and the voltage-dependent transmission spectra of rGO samples. It is shown that the transport properties of rGO are strongly dependent on the coverage ratio. Obtained results indicate that some of the rGO samples have negative differential resistance characteristics while normally insulating rGO can behave as conducting beyond a certain threshold voltage. The reasons of the peculiar electronic transport behaviour of rGO samples are further investigated, taking the transmission eigenstates and their localization degree into consideration.The findings of this study are expected to be helpful for engineering the characteristics of rGO structures.展开更多
Cutter-suction dredger transports slurry through pipeline. But the pipeline is easy to be jammed and frayed because of huge resistance, resulting in limited exertion of dredger and high energy consumption. One of the ...Cutter-suction dredger transports slurry through pipeline. But the pipeline is easy to be jammed and frayed because of huge resistance, resulting in limited exertion of dredger and high energy consumption. One of the solutions is air injection transporting, which can reduce the resistance in pipeline. This paper makes research on the relations between pipeline distance and other factors such as slurry concentration, pressure of air injection and transportation distance, by making use of Prof. Aluf Orell' s slug model. The test data prove that the key factors are slurry concentration and air volume fraction, and that high slurry concentration and low air volume fraction can reduce more resistance, and such reducing effect becomes weaker with the increase of transportation distance.展开更多
基金the National Natural Science Foundation of China(No.52204023)China Postdoctoral Science Foundation(2022M713465)Postdoctoral Innovation Talent Support of Shandong Province(SDBX2022033)。
文摘During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.
基金supported by the National Natural Science Foundation of China(Nos.52222403,52074333,52120105007)Taishan Scholar Young Expert(No.tsqn202211079)。
文摘Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.
基金supported by the China Postdoctoral Science Foundation(No.2021MD703944)the Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414211808)+1 种基金the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2021ZR06)the National Natural Science Foundation of China(No.21776053)。
文摘Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.
基金scientific research project of SINOPEC Corporation(CLY19005)2020 Key R&D Program of Shandong Province(2020CXGC010403).
文摘Using K2S2O8-Na2SO3 as the redox initiation system,a hydrogen-bond-association-based dodecyl methacrylate system associative anti-shear drag reducer was synthesised by standard emulsion polymerisation.The reaction process was simple and gentle as well as safe and stable.Molecular design was carried out using molecular dynamics simulation methods.The results of infrared spectroscopy,thermogravimetric analysis,differential scanning calorimetry,gel chromatography,and laser light scattering showed that the reaction polymerisation was relatively complete,the product was uniform,the molecular weight distribution was controllable,and the synthesised polymer had good flexibility.The donor lauryl methacrylate-styrene-methacrylic acid(LMA-St-MAA)and acceptor lauryl methacrylate-styrene-dimethylaminoethyl methacrylate(LMA-St-DMA)polymers had an associative intermolecular interaction force,which increased the molecular cluster size of the associative system complex.The complex had good shear resistance,and the test results of the tube pump shear test showed that the synthesised associative oil-soluble polymer drag reduction system exhibited better drag reduction rate performance than poly-α-olefins over repeated cycles.The research results provide a reference plan for minimising the number of station-to-station inputs,thereby ensuring the stability of oil pipelines and reducing transportation costs.
基金supported by National Natural Science Foundation of China (NSFC 52372041, 52302087, 51772060, 51672059 and 51621091)Heilongjiang Touyan Team Program+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund (SAST2022-60)。
文摘Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
基金partly funded by a grant from the Research Council of Lithuania (MIP-116/2012)
文摘The impact of sustainable reduced tillage (RT) on the physical properties of soil is well documented worldwide; however, there is no precise information about the influence of long-term RT or no-till (NT) on the soils at the boundary for grain maize-growing in the semi-humid subarctic climate conditions of the Baltic states, especially on the formation of a hard- ened upper soil layer (10-15 cm in depth) --"loosening hardpan". This study was carried out at the Research Station of Aleksandras Stulginskis University, Lithuania from 2009-2012. The investigations were based on a long-term (since 1988) field experiment. The aim of the investigation was to ascertain the influence of reduced primary tillage on the main soil's physical properties. This study examined soils that were deep ploughing (DP), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC), and no-till (NT). Reducing the tillage intensity to NT had no significant effect on the structural soil's composition; however, the stability of the structure of the 〉1 and 〉0.25 mm-size fractions was significantly higher in the non-reversibly tilled (DC, SC) and NT plots. The penetration resistance of the DP soils was less after primary tillage and wintering, and became similar to the NT plots at the end of the maize growth season. After primary tillage and wintering, the soil moisture content in the upper soil layer (0-5 cm depth) of the NT plots was 17-49 and 16-18% higher than that in the DP. Long-term reduction of primary tillage up to NT generally had no significant effect on the moisture content and soil bulk density of the 0-10 and 10-20 cm layers. The results showed that long-term RT stabilized the physical quality of soil. Less soil penetration resistance was established in the DP plots compared to both RT and NT, however, indicators of the formation of a uniform "loosening hardpan" layer were not found. It is summarized that long-term RT or NT systems stabilize, or may increase, the physical quality of soil in crop cultivation with low inter-row coverage potential (maize), and could be applied in semi-humid subarctic climate conditions as a good option to prevent soil degradation.
文摘Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically. Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.
基金Project(50575202) supported by the National Natural Science Foundation of China
文摘The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.
文摘Magnesium(Mg) has attracted wide interest in orthopedic applications as they exhibit great biodegradability and strong biocompatibility,while corrosion is the main concern for Mg that should be addressed prior to biomedical applications. In this work, ZM31(Mg-3Zn-1Mn)/x RGO(x = 0, 0.5, 1 and 1.5 wt%) biocomposites were synthesized by semi-powder metallurgy method. The results showed that the RGO acting as an effective reinforcing filler to prevent deformation and showed better compressive strength(282.3 ± 9 MPa) and revealed enhancement in failure Strain(7.8 ± 2.1%) at 1 wt% RGO concentration compared to Mg alloy(244.5 ± 9 MPa and 7.1 ± 1.5%respectively). Moreover, fracture analysis indicated a more ductile fracture of the nanocomposites after the incorporation of RGO. Crack bridging, crack deflection and crack branching are dominant mechanisms for reinforcement of Mg-based containing RGO. Mg composites containing 0.5 wt% RGO showed a low corrosion rate(2.75 mm/year), while more incorporation of RGO resulted in an increased corrosion rate(4.38 mm/year). In addition, the degradation rate of ZM31 alloy(2.57 mg·cm-2·d-1) obviously decreased with the addition of 0.5 wt%RGO(1.84 mg·cm-2·d-1) in the SBF. Besides, continuous apatite layers were created on the composites in the SBF solution. Also, the cell culture examinations showed good cell viability and adhesion on composites with 0.5 and 1 wt% RGO, which was demonstrated by the SEM and MTT assay The alkaline phosphatase(ALP) activity of the ZM3–0.5RGO composite was considerably higher than that of ZM31matrix alloy in 24 h and 48 h, implying higher osteoblastic differentiation. The antibacterial behavior toward both bacteria(E. coli and S.aureus) exhibited that escalating RGO concentration in Mg-matrix composites leads to further inhibition of bacteria growth. These findings suggested that ZM31–0.5RGO biocomposite could be a more promising candidate for orthopedic implants.
文摘Globally, about one third of all food produced is wasted every year. Losses take place along the entire food chain and they need to be analyzed and monitored due to their impact on the development of the food sector. In addition to quantitative losses, irrational use of food contributes to the depletion of natural resources (water and energy) and poses a threat to the environment, constituting a barrier to sustainable development of the food sector. The aim of this study was to establish the causes and effects of food waste throughout the food supply chain and to propose mitigation measures. Identified causes of food waste can be divided into two groups. The first are those that lead to the fact that food cannot be consumed (e.g., inadequate conditions of agricultural production and interruption of the cold chain). In the second, those that cause food cannot be sold (e.g., wrong label and wrong product weight). Most of the identified causes of food waste can be avoided (e.g., by improving the conditions of production, storage, and transportation). However, it is not possible to eliminate all potential errors leading to food waste. It is therefore necessary to consider what action to take to use food as intended. One way to reduce losses and food waste can be re-distributing to charity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574083 and 61434001)the National Basic Research Program of China(Grant No.2015CB352101)+4 种基金the National Key Research and Development Program of China(Grant No.2016YFA0200404)the National Key Project of Science and Technology of China(Grant No.2011ZX02403-002)Special Fund for Agroscientic Research in the Public Interest of China(Grant No.201303107)the Independent Research Program of Tsinghua University,China(Grant No.2014Z01006)Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen,China(Grant No.ZDSYS20140509172959969)
文摘Graphene-based resistive random access memory (GRRAM) has grasped researchers' attention due to its merits com- pared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can be divided into two categories: graphene RRAM and graphene oxide (GO)/reduced graphene oxide (rGO) RRAM. Using graphene as the electrode, GRRAM can own many good characteristics, such as low power consumption, higher density, transparency, SET voltage modulation, high uniformity, and so on. Graphene flakes sandwiched between two dielectric layers can lower the SET voltage and achieve multilevel switching. Moreover, the GRRAM with rGO and GO as the dielectric or electrode can be simply fabricated. Flexible and high performance RRAM and GO film can be modified by adding other materials layer or making a composite with polymer, nanoparticle, and 2D materials to further improve the performance. Above all, GRRAM shows huge potential to become the next generation memory.
文摘Graphene is mainly implemented by these methods: exfoliating, unzipping of carbon nanotubes, chemical vapour deposition, epitaxial growth and the reduction of graphene oxide. The latter option has the advantage of low cost and precision. However, reduced graphene oxide(rGO) contains hydrogen and/or oxygen atoms hence the structure and properties of the rGO and intrinsic graphene are different. Considering the advantages of the implementation and utilization of rGO, voltage-dependent electronic transport properties of several rGO samples with various coverage ratios are investigated in this work. Ab initio simulations based on density functional theory combined with non-equilibrium Green's function formalism are used to obtain the current–voltage characteristics and the voltage-dependent transmission spectra of rGO samples. It is shown that the transport properties of rGO are strongly dependent on the coverage ratio. Obtained results indicate that some of the rGO samples have negative differential resistance characteristics while normally insulating rGO can behave as conducting beyond a certain threshold voltage. The reasons of the peculiar electronic transport behaviour of rGO samples are further investigated, taking the transmission eigenstates and their localization degree into consideration.The findings of this study are expected to be helpful for engineering the characteristics of rGO structures.
文摘Cutter-suction dredger transports slurry through pipeline. But the pipeline is easy to be jammed and frayed because of huge resistance, resulting in limited exertion of dredger and high energy consumption. One of the solutions is air injection transporting, which can reduce the resistance in pipeline. This paper makes research on the relations between pipeline distance and other factors such as slurry concentration, pressure of air injection and transportation distance, by making use of Prof. Aluf Orell' s slug model. The test data prove that the key factors are slurry concentration and air volume fraction, and that high slurry concentration and low air volume fraction can reduce more resistance, and such reducing effect becomes weaker with the increase of transportation distance.