期刊文献+
共找到427篇文章
< 1 2 22 >
每页显示 20 50 100
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
1
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(PDEs) META-LEARNING reduced order modeling Neural networks(NNs) Auto-decoder
下载PDF
Adding-Point Strategy for Reduced-Order Hypersonic Aerothermodynamics Modeling Based on Fuzzy Clustering 被引量:7
2
作者 CHEN Xin LIU Li +1 位作者 ZHOU Sida YUE Zhenjiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期983-991,共9页
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con... Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy. 展开更多
关键词 reduced order model fuzzy clustering hypersonic aerothermodynamics adding-point strategy
下载PDF
Sliding Mode Control Design via Reduced Order Model Approach 被引量:2
3
作者 B.Bandyopadhyay Alemayehu G/Egziabher Abera +1 位作者 S.Janardhanan Victor Sreeram 《International Journal of Automation and computing》 EI 2007年第4期329-334,共6页
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g... This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface. 展开更多
关键词 Sliding mode control order reduction reduced order model higher order system optimal control.
下载PDF
Fourth-Order Predictive Modelling: II. 4th-BERRU-PM Methodology for Combining Measurements with Computations to Obtain Best-Estimate Results with Reduced Uncertainties
4
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第4期439-475,共37页
This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, com... This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures. 展开更多
关键词 Fourth-order Predictive modeling Data Assimilation Data Adjustment Uncertainty Quantification reduced Predicted Uncertainties
下载PDF
Model reduction for supersonic cavity flow using proper orthogonal decomposition(POD)and Galerkin projection 被引量:2
5
作者 Chao ZHANG Zhenhua WAN Dejun SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第5期723-736,共14页
The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are base... The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption, valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes (N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation (DNS) results, the proposed model predicts flow dynamics (e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows. 展开更多
关键词 supersonic cavity flow reduced-order model (rom proper orthogonal decomposition (POD) Galerkin projection
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. II: Probabilistically Incorporated Computational Model (2nd-BERRU-PMP)
6
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期267-294,共28页
This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and par... This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses. 展开更多
关键词 Second-order Predictive modeling Data Assimilation Data Adjustment Uncertainty Quantification reduced Predicted Uncertainties
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. I: Deterministically Incorporated Computational Model (2nd-BERRU-PMD)
7
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期236-266,共31页
This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this met... This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses. 展开更多
关键词 Second-order Predictive modeling Data Assimilation Data Adjustment Uncertainty Quantification reduced Predicted Uncertainties
下载PDF
Fourth-Order Predictive Modelling: I. General-Purpose Closed-Form Fourth-Order Moments-Constrained MaxEnt Distribution
8
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第4期413-438,共26页
This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and k... This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2). 展开更多
关键词 Maximum Entropy Principle Fourth-order Predictive modeling Data Assimilation Data Adjustment reduced Predicted Uncertainties model Parameter Calibration
下载PDF
Toward Analytical Homogenized Relaxation Modulus for Fibrous Composite Material with Reduced Order Homogenization Method
9
作者 Huilin Jia Shanqiao Huang Zifeng Yuan 《Computers, Materials & Continua》 SCIE EI 2025年第1期193-222,共30页
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom... In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability. 展开更多
关键词 Homogenized relaxation modulus viscoelastic standard solid model reduced order homogenization fibrous composite material
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. III: Illustrative Application to a Reactor Physics Benchmark
10
作者 Ruixian Fang Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期295-322,共28页
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ... This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis). 展开更多
关键词 Second-order Predictive modeling OECD/NEA Reactor Physics Benchmark Data Assimilation Best-Estimate Results Uncertainty Quantification reduced Predicted Uncertainties
下载PDF
基于降阶模型的配网电缆温度场数字孪生建模方法
11
作者 牛海清 黄世杰 +4 位作者 王东 马海涛 范华 翁利国 刘刚 《华南理工大学学报(自然科学版)》 北大核心 2025年第1期10-20,共11页
电力设备的物理状态感知是建设智能电网的关键点之一。数字孪生技术可实时映射并快速预测设备的物理状态,但现有建模方法难以满足电缆温度场数字孪生模型的实时计算要求。鉴于此,该文提出了一种基于降阶模型的配网电缆温度场数字孪生建... 电力设备的物理状态感知是建设智能电网的关键点之一。数字孪生技术可实时映射并快速预测设备的物理状态,但现有建模方法难以满足电缆温度场数字孪生模型的实时计算要求。鉴于此,该文提出了一种基于降阶模型的配网电缆温度场数字孪生建模方法。首先,建立电缆多物理场全阶模型,基于奇异值分解和响应面插值方法建立其稳态温度场降阶模型;然后,结合稳态温度场降阶模型及电缆表面温度数据,通过实时求解多回路电缆传热反问题重构当前的电缆内部瞬态温度场,并基于排管敷设电缆温升试验验证了方法的正确性。进一步地,将该方法应用于实际运行的10kV电缆的内部瞬态温度场重构,将重构结果作为已知初始状态,基于稳态温度场降阶模型和改进叠加法快速预测应急状态下的电缆导体温度。与全阶模型相比,电缆导体温度重构值的最大相对误差为1.76%,应急状态运行的导体温度预测误差为1.01%,单次重构和预测计算时间分别为8.1s和3.6s,计算效率分别提高约35555倍和6000倍。该方法兼顾了计算速度、计算精度和建模成本,对其他类型电力设备温度场数字孪生建模具有参考意义。 展开更多
关键词 配网电缆 数字孪生 降阶模型 温度场重构
下载PDF
基于递归本征正交分解与强跟踪扩展卡尔曼滤波的结构损伤识别
12
作者 杨少冲 姚远 +2 位作者 刘家亮 雷振 方有亮 《振动工程学报》 北大核心 2025年第1期117-125,共9页
针对目前已有损伤识别方法难以实时跟踪结构损伤且计算量大的问题,提出了一种基于递归本征正交分解(recursive proper orthogonal decomposition,RPOD)与强跟踪扩展卡尔曼滤波(strong tracking extended Kalman filter,STEKF)相结合的... 针对目前已有损伤识别方法难以实时跟踪结构损伤且计算量大的问题,提出了一种基于递归本征正交分解(recursive proper orthogonal decomposition,RPOD)与强跟踪扩展卡尔曼滤波(strong tracking extended Kalman filter,STEKF)相结合的模型降阶与结构损伤在线识别方法,对动载荷作用下的结构损伤识别进行了研究。利用RPOD方法在线更新并实时建立反映结构状态的降阶模型,解决未知载荷作用下多自由度结构动力分析计算量大且难以收敛的问题,同时跟踪损伤的演化并对其进行定位;通过STEKF方法跟踪降阶模型的状态向量,识别因损伤而退化的降阶模型参数。分别采用六层剪切型框架的数值模拟与三层钢框架的模型试验验证了该方法的可行性,结果表明,所提出的方法能够准确建立降阶模型并跟踪降阶模型参数的时变历程,同时可以有效地识别出剪切型建筑结构损伤的位置和程度,即使在处理高程度噪声时仍有较高的精度。 展开更多
关键词 损伤识别 模型降阶 递归本征正交分解 强跟踪扩展卡尔曼滤波 数据驱动
下载PDF
Identification of reduced-order model for an aeroelastic system from flutter test data 被引量:4
13
作者 Tang Wei Wu Jian Shi Zhongke 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期337-347,共11页
Recently, flutter active control using linear parameter varying(LPV) framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroela... Recently, flutter active control using linear parameter varying(LPV) framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroelastic models. Therefore, the reduced-order model is required by synthesis for avoidance of large computation cost and high-order controller. This paper proposes a new procedure for generation of accurate reduced-order linear time-invariant(LTI) models by using system identification from flutter testing data. The proposed approach is in two steps. The well-known poly-reference least squares complex frequency(p-LSCF) algorithm is firstly employed for modal parameter identification from frequency response measurement. After parameter identification,the dominant physical modes are determined by clear stabilization diagrams and clustering technique. In the second step, with prior knowledge of physical poles, the improved frequencydomain maximum likelihood(ML) estimator is presented for building accurate reduced-order model. Before ML estimation, an improved subspace identification considering the poles constraint is also proposed for initializing the iterative procedure. Finally, the performance of the proposed procedure is validated by real flight flutter test data. 展开更多
关键词 Aeroelastic system Flutter test Maximum likelihood reduced-order model Subspace identification
原文传递
A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD 被引量:9
14
作者 Chen Xin Liu Li +1 位作者 Long Teng Yue Zhenjiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1328-1342,共15页
Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aim... Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency. 展开更多
关键词 Hypersonic vehicles Aerothermodynamic reduced order model(rom) Surrogate Proper orthogonaldecomposition (POD)
原文传递
多热源系统全域温度场的实时重构策略
15
作者 张潞 叶彧维 +2 位作者 艾青 刘梦 帅永 《哈尔滨工业大学学报》 北大核心 2025年第2期25-32,共8页
在多热源系统的动态热管理中,全域热场分析与实时评估是核心要素,而传统的离散测量和重构技术难以实时获取温度场动态变化。为此,提出一种基于离散测点的全域温度场重构策略,通过引入奇异值分解提取温度场的特征基函数,并引入灰狼优化... 在多热源系统的动态热管理中,全域热场分析与实时评估是核心要素,而传统的离散测量和重构技术难以实时获取温度场动态变化。为此,提出一种基于离散测点的全域温度场重构策略,通过引入奇异值分解提取温度场的特征基函数,并引入灰狼优化算法对重构离散测点的布局进行优化,通过与离散测点值结合,建立全域温度场的关联系数矩阵。采用数值实验,基于4种类型热源系统验证了该方法的可靠性。结果表明:测点布局优化后,4种温度模型的理论重构误差水平显著降低了至少3个数量级。采用该方法对某多芯片PCB的温度场进行重构,与数值实验结果对比显示温度场平均误差为0.12℃,均方根百分比误差低于1%,验证了该策略在实际应用中的可靠性,为电子设备热控热分析提供了参考依据。 展开更多
关键词 模型降阶 最小二乘 温度场重构 布局优化
下载PDF
Data driven reduced modeling for fluidized bed with immersed tubes based on PCA and Bi-LSTM neural networksAuthor links open overlay panel 被引量:1
16
作者 Jiabin Fang Wenkai Cu +5 位作者 Huang Liu Huixin Zhang Hanqing Liu Jinjia Wei Xiang Ma Nan Zheng 《Particuology》 SCIE EI CAS CSCD 2024年第8期1-18,共18页
The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduce... The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduced order modeling method,the reduced order model based on principal component analysis and bidirectional long short-term memory networks(PBLSTM ROM),was developed to capture complex spatio-temporal dynamics of fluidized beds.By combining principal component analysis and Bidirectional long-short-term memory networks,the PBLSTM ROM effectively extracted dynamic evolution information without any prior knowledge of governing equations,enabling reduced-order modeling of unsteady flow fields.The PBLSTM ROM was validated using the solid volume fraction and gas velocity flow fields of a fluidized bed with immersed tubes,showing superior performance over both the PLSTM and PANN ROMs in accurately capturing temporal changes in the fluidization fields,especially in the region near immersed tubes where severe fluctuations appear.Moreover,the PBLSTM ROM improved the simulation speed by five orders of magnitude compared to traditional computational fluid dynamics simulations.These findings suggest that the PBLSTM ROM presents a promising approach for analyzing the complex fluid flows in engineering practice. 展开更多
关键词 reduced order modeling Fluidized bed Deep learning Bi-LSTM
原文传递
Static aeroelastic analysis including geometric nonlinearities based on reduced order model 被引量:7
17
作者 Xie Changchuan An Chao +1 位作者 Liu Yi Yang Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期638-650,共13页
This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and ... This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result. 展开更多
关键词 Aeroelasticity Finite element method Geometric nonlinearity reduced order models TRIMS
原文传递
Reduced order model for unsteady aerodynamic performance of compressor cascade based on recursive RBF 被引量:7
18
作者 Jiawei HU Hanru LIU +2 位作者 Yan'gang WANG Weixiong CHEN Yan MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期341-351,共11页
Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performa... Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure. 展开更多
关键词 Compressor cascade Neural network Recursive radial basis function reduced order model Unsteady flow
原文传递
Active Control Law Design for Flutter/LCO Suppression Based on Reduced Order Model Method 被引量:3
19
作者 Chen Gang Li Yueming Yan Guirong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第6期639-646,共8页
Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low orde... Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully. 展开更多
关键词 limit cycle oscillation aeroelasticity reduced order model active control law static output feedback
原文传递
A reduced-order-model-based multiple-in multiple-out gust alleviation control law design method in transonic flow 被引量:2
20
作者 CHEN Gang WANG Xian LI YueMing 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第2期368-378,共11页
Gust alleviation is very important to a large flexible aircraft.A nonlinear low-order aerodynamic state space model is required to model the nonlinear aeroelastic responses due to gust.Based on the proper orthogonal d... Gust alleviation is very important to a large flexible aircraft.A nonlinear low-order aerodynamic state space model is required to model the nonlinear aeroelastic responses due to gust.Based on the proper orthogonal decomposition method,a reduced order modeling of gust loads was proposed.And then the open-loop and closed-loop reduced order state space model for the transonic aeroelastic system was developed.The static output feed back control scheme was used to design a simple multiple-in multiple-out(MIMO)gust alleviation control law.The control law was demonstrated with the Goland+wing model with four control surfaces.The simulation results of different discrete gusts show the capability and good performance of the designed MIMO controller in transonic gust alleviation. 展开更多
关键词 transonic gust alleviation reduced order model proper orthogonal decomposition static output feed back
原文传递
上一页 1 2 22 下一页 到第
使用帮助 返回顶部