Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Metho...Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations Is were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.展开更多
The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great co...The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.展开更多
The hybrid of carbon nanotube(CNT)and reduced graphene oxide(RGO)reinforced ZK61 composite was fabricated by a hot extrusion process.Compared with the raw ZK61 alloy and single-reinforced composites,the hybrid-reinfor...The hybrid of carbon nanotube(CNT)and reduced graphene oxide(RGO)reinforced ZK61 composite was fabricated by a hot extrusion process.Compared with the raw ZK61 alloy and single-reinforced composites,the hybrid-reinforced by RGO+CNT complex exhibited significant enhancements both in mechanical and thermal performance.By adjusting the proportion of RGO and CNT in ZK61 alloy,the obtained optimum ZK61/(0.06 wt%RGO+0.54 wt%CNT)composite exhibited increase of 25.4%in yield strength,26.5%in ultimate tensile strength,104%in failure strain and 30.4%in thermal conductivity,respectively,in comparison with ZK61 alloy.The superior properties of the nano-hybrid composite are attributed to the synergetic effects of RGO and CNT,leading to a uniform dispersion and integrated structure as well as the enhanced interfacial bonding with matrix.The strengthening ability of RGO and CNT was calculated to quantify their individual contribution to the improvement in mechanical and thermal properties of the ZK61 matrix composite.The RGO+CNT hybrids provide a promising way to develop Mg matrix composites with impressive performances.展开更多
Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry prop- erties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is high...Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry prop- erties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is highly suitable for electrode applications in lithium ion batteries and supercapacitors which often employ organic electrolytes. Also the hydrophobic features enable the oil enrichment for the crude oil separation from seawater. The ever reported synthesis routes towards such a composite either involve complicated multi-step reactions, e.g., chemical vapor depositions, or lead to insufficient extru- sion of carbon nanotubes in the chemical reductions of graphene oxide, e.g., fully embedding between the compact graphene oxide sheets. As a consequence, the formation of standalone carbon nanotubes over graphene sheets remains of high interests. Herein we use the facile flash light irradiation method to induce the reduction of graphene oxides in the presence of carbon nanotubes. Photographs, micrographs, X-ray diffraction, infrared spectroscopy and thermogravimetric analysis all indicate that graphene oxides has been reduced. And the contact angle tests confirm the excellent hydrophobic perfor- mances of the synthesized carbon nanotube/reduced graphene oxide composite films. This one-step treatment represents a straightforward and high efficiency way for the reduction of carbon nanotubes/graphene oxides composites.展开更多
The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical ...The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical and eco-friendly.Reinforcing the metals with carbonaceous nanomaterials are progressively in focus due to their excellent capability to inculcate and tailor the properties of MMCs.In the present research,a hybrid nanocomposite of MWCNT-Graphene-AZ31 Mg alloy has been developed by using variable tool rotation speeds with friction stir processing(FSP).Optimized reinforcement ratio of 1.6%vol.MWCNT and 0.3%vol.of graphene have been used with variable tool rotation speeds,whereas other processing parameters are kept constant.The developed specimens were investigated using standard testing equipment for evaluating and comparing the mechanical properties on the basis of the microstructure of the processing regions and their morphological analysis,according to the ASTM standards.The obtained results revealed an improvement of 19.72%in microhardness and 77.5% of compressive strength in comparison with the base metal AZ 31 Magnesium alloy,with a tool rotational speed of 1400rpm.The values of tensile stress and percentage area reduction were recorded as less than that of the base metal matrix,but an increasing trend has been observed in the values of both with the improvement on rotational speeds of the tool.The effectual strengthening mechanisms are analyzed on the bases of SEM images and observed that discussed and found that grain refinement strengthening is the major contributor to the strength of the nanocomposite.展开更多
Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and e...Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and ecological environment. The purpose of our work is to make assessment on the toxicity of graphene oxide (GO) against human cell line (human bone marrow neuroblastoma cell line and human epithelial carcinoma cell line) and zebrafish (Danio rerio) by comparing the toxic effects of GO with its sister, multi-walled carbon nanotubes (MWNTs). The results show that GO has a moderate toxicity to organisms since it can induce minor (about 20%) cell growth inhibition and slight hatching delay of zebrafish embryos at a dosage of 50 mg/L, but did not result in significant increase of apoptosis in embryo, while MWNTs exhibit acute toxicity leading to a strong inhibition of cell proliferation and serious morphological defects in developing embryos even at relatively low concentration of 25 mg/L. The distinctive toxicity of GO and MWNTs should be ascribed to the different models of interaction between nanomaterials and organisms, which arises from the different geometric structures of nanomaterials. Collectively, our work suggests that GO does actual toxicity to organisms posing potential environmental risks and the result is also shedding light on the geometrical structure-dependent toxicity of graphitic nanomaterials.展开更多
In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). ...In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance.展开更多
Solar-thermal water evaporation has attracted increasing attention owing to the promising potential to solve the global clean water and energy crisis.But,the development of this strategy is limited by the lack of mate...Solar-thermal water evaporation has attracted increasing attention owing to the promising potential to solve the global clean water and energy crisis.But,the development of this strategy is limited by the lack of materials with high solar-thernal conversion efficiency,local heating of superficial water,easy preparation and low cost.Herein,we proposed a facile strategy to prepare a reduced graphene oxide/carbon fiber composite membrane,denoted as RGO/CF membrane.The surface of the RGO/CF membrane was highly hydrophobic,endowing the composite membrane with the self-floating ability on the water without any assistance.The light absorbance ability achieved as high as ca.98%in the wavelength range of 300-1200 nm.The steam evaporation efliciency under the illumination of3-sun was 97%,generating water steam at a rate of 4.54 kg·m^-2·h^-1.Moreover,the solar-thermal steam production rate showed high stability during successive 30 cvcle tests.展开更多
Graphene oxide (GO)-multiwalled carbon nanotube (MWCNT) composite was synthesized and characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, micro Raman, Fourier transform infra...Graphene oxide (GO)-multiwalled carbon nanotube (MWCNT) composite was synthesized and characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, micro Raman, Fourier transform infrared and ultraviolet-visible near infrared spectroscopy techniques. Spectral characteris- tics of cladding modified fiber optic gas sensors were studied for various concentrations of ammonia, ethanol and methanol at 27 ℃. Thickness of the gas sensing layer was controlled by varying the concentration of composite in ethanol medium (0.5 and 1 mg/mL) for three times dipping process. The O.S mg/ mL concentrated GO-MWCNT coated sensor showed 1.20, 1.40 and 1.15 times higher sensitivity than the GO coated sensor for ammonia, ethanol and methanol vapors, respectively. Furthermore, it exhibited 1.50, 1.80 and 1.80 times better sensitivity than 1 mg/mL concentrated GO-MWCNT coated sensor for ammonia, ethanol and methanol vapors, respectively. The presence of functional groups in GO increased the sen- sitivity. This is mainly attributed to the effective electron charge transfer between the composite materials and analytes.展开更多
This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-...This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-wailed carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.展开更多
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(200800191013)the Fundamental Research Funds for the Central Universities
文摘Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations Is were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.
基金financial support from the National Natural Science Foundation of China(grant no.21406052the Program for the Outstanding Young Talents of Hebei Province(grant no.BJ2014010)the Scientific Research Foundation for Selected Overseas Chinese Scholars,Ministry of Human Resources and Social Security of China(grant no.CG2015003002)
文摘The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.
基金supported by the National Key Research and Development Program of China (No.2021YFB3701100)the Beijing Natural Science Foundation (No.2192006)the National Natural Science Foundation of China (No.51801004).
文摘The hybrid of carbon nanotube(CNT)and reduced graphene oxide(RGO)reinforced ZK61 composite was fabricated by a hot extrusion process.Compared with the raw ZK61 alloy and single-reinforced composites,the hybrid-reinforced by RGO+CNT complex exhibited significant enhancements both in mechanical and thermal performance.By adjusting the proportion of RGO and CNT in ZK61 alloy,the obtained optimum ZK61/(0.06 wt%RGO+0.54 wt%CNT)composite exhibited increase of 25.4%in yield strength,26.5%in ultimate tensile strength,104%in failure strain and 30.4%in thermal conductivity,respectively,in comparison with ZK61 alloy.The superior properties of the nano-hybrid composite are attributed to the synergetic effects of RGO and CNT,leading to a uniform dispersion and integrated structure as well as the enhanced interfacial bonding with matrix.The strengthening ability of RGO and CNT was calculated to quantify their individual contribution to the improvement in mechanical and thermal properties of the ZK61 matrix composite.The RGO+CNT hybrids provide a promising way to develop Mg matrix composites with impressive performances.
文摘Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry prop- erties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is highly suitable for electrode applications in lithium ion batteries and supercapacitors which often employ organic electrolytes. Also the hydrophobic features enable the oil enrichment for the crude oil separation from seawater. The ever reported synthesis routes towards such a composite either involve complicated multi-step reactions, e.g., chemical vapor depositions, or lead to insufficient extru- sion of carbon nanotubes in the chemical reductions of graphene oxide, e.g., fully embedding between the compact graphene oxide sheets. As a consequence, the formation of standalone carbon nanotubes over graphene sheets remains of high interests. Herein we use the facile flash light irradiation method to induce the reduction of graphene oxides in the presence of carbon nanotubes. Photographs, micrographs, X-ray diffraction, infrared spectroscopy and thermogravimetric analysis all indicate that graphene oxides has been reduced. And the contact angle tests confirm the excellent hydrophobic perfor- mances of the synthesized carbon nanotube/reduced graphene oxide composite films. This one-step treatment represents a straightforward and high efficiency way for the reduction of carbon nanotubes/graphene oxides composites.
文摘The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical and eco-friendly.Reinforcing the metals with carbonaceous nanomaterials are progressively in focus due to their excellent capability to inculcate and tailor the properties of MMCs.In the present research,a hybrid nanocomposite of MWCNT-Graphene-AZ31 Mg alloy has been developed by using variable tool rotation speeds with friction stir processing(FSP).Optimized reinforcement ratio of 1.6%vol.MWCNT and 0.3%vol.of graphene have been used with variable tool rotation speeds,whereas other processing parameters are kept constant.The developed specimens were investigated using standard testing equipment for evaluating and comparing the mechanical properties on the basis of the microstructure of the processing regions and their morphological analysis,according to the ASTM standards.The obtained results revealed an improvement of 19.72%in microhardness and 77.5% of compressive strength in comparison with the base metal AZ 31 Magnesium alloy,with a tool rotational speed of 1400rpm.The values of tensile stress and percentage area reduction were recorded as less than that of the base metal matrix,but an increasing trend has been observed in the values of both with the improvement on rotational speeds of the tool.The effectual strengthening mechanisms are analyzed on the bases of SEM images and observed that discussed and found that grain refinement strengthening is the major contributor to the strength of the nanocomposite.
基金supported by the National Natural Science Foundation of China (21035005)the Doctoral Program Foundation of Institutions of Higher Education of China (20115301120002)the Natural Science Foundation of Yunnan Province of China (2011FB007)
文摘Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and ecological environment. The purpose of our work is to make assessment on the toxicity of graphene oxide (GO) against human cell line (human bone marrow neuroblastoma cell line and human epithelial carcinoma cell line) and zebrafish (Danio rerio) by comparing the toxic effects of GO with its sister, multi-walled carbon nanotubes (MWNTs). The results show that GO has a moderate toxicity to organisms since it can induce minor (about 20%) cell growth inhibition and slight hatching delay of zebrafish embryos at a dosage of 50 mg/L, but did not result in significant increase of apoptosis in embryo, while MWNTs exhibit acute toxicity leading to a strong inhibition of cell proliferation and serious morphological defects in developing embryos even at relatively low concentration of 25 mg/L. The distinctive toxicity of GO and MWNTs should be ascribed to the different models of interaction between nanomaterials and organisms, which arises from the different geometric structures of nanomaterials. Collectively, our work suggests that GO does actual toxicity to organisms posing potential environmental risks and the result is also shedding light on the geometrical structure-dependent toxicity of graphitic nanomaterials.
基金supported by the National Natural Science Foundation of China (Nos.51432008,51502242,U1435202,and 51202194)the Research Fund for the Doctoral Program of Higher Education of China (No.20126102110013)the Key Grant Project of Chinese Ministry of Education (No.313047)
文摘In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance.
基金Supported by the National Natural Science Foundation of China(No.21706191)the Program for Tianjin Innovative Research Team in Universities,China(No.TD 13-5031)the Tianin"131"Research Team of Innovative Talents,China.
文摘Solar-thermal water evaporation has attracted increasing attention owing to the promising potential to solve the global clean water and energy crisis.But,the development of this strategy is limited by the lack of materials with high solar-thernal conversion efficiency,local heating of superficial water,easy preparation and low cost.Herein,we proposed a facile strategy to prepare a reduced graphene oxide/carbon fiber composite membrane,denoted as RGO/CF membrane.The surface of the RGO/CF membrane was highly hydrophobic,endowing the composite membrane with the self-floating ability on the water without any assistance.The light absorbance ability achieved as high as ca.98%in the wavelength range of 300-1200 nm.The steam evaporation efliciency under the illumination of3-sun was 97%,generating water steam at a rate of 4.54 kg·m^-2·h^-1.Moreover,the solar-thermal steam production rate showed high stability during successive 30 cvcle tests.
文摘Graphene oxide (GO)-multiwalled carbon nanotube (MWCNT) composite was synthesized and characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, micro Raman, Fourier transform infrared and ultraviolet-visible near infrared spectroscopy techniques. Spectral characteris- tics of cladding modified fiber optic gas sensors were studied for various concentrations of ammonia, ethanol and methanol at 27 ℃. Thickness of the gas sensing layer was controlled by varying the concentration of composite in ethanol medium (0.5 and 1 mg/mL) for three times dipping process. The O.S mg/ mL concentrated GO-MWCNT coated sensor showed 1.20, 1.40 and 1.15 times higher sensitivity than the GO coated sensor for ammonia, ethanol and methanol vapors, respectively. Furthermore, it exhibited 1.50, 1.80 and 1.80 times better sensitivity than 1 mg/mL concentrated GO-MWCNT coated sensor for ammonia, ethanol and methanol vapors, respectively. The presence of functional groups in GO increased the sen- sitivity. This is mainly attributed to the effective electron charge transfer between the composite materials and analytes.
基金supported by the strategic grant POSDRU/88/1.5/S/50783POSDRU/21/1.5/G/13798+1 种基金POSDRU/89/1.5/S/57649 co-financed by the European Social Fund - Investing in People,within the Sectoral Operational Programme Human Resources Development 2007-2013partially by the PN II-RU-PD129/2010 and PN II Ideas 165/2011
文摘This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-wailed carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.