A Robust Adaptive Video Encoder (RAVE) based on human visual model is proposed. The encoder combines the best features of Fine Granularity Scalable (FGS) coding, framedropping coding, video redundancy coding, and huma...A Robust Adaptive Video Encoder (RAVE) based on human visual model is proposed. The encoder combines the best features of Fine Granularity Scalable (FGS) coding, framedropping coding, video redundancy coding, and human visual model. According to packet loss and available bandwidth of the network, the encoder adjust the output bit rate by jointly adapting quantization step-size instructed by human visual model, rate shaping, and periodically inserting key frame. The proposed encoder is implemented based on MPEG-4 encoder and is compared with the case of a conventional FGS algorithm. It is shown that RAVE is a very efficient robust video encoder that provides improved visual quality for the receiver and consumes equal or less network resource. Results are confirmed by subjective tests and simulation tests.展开更多
Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rat...Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rate-distortion based error resilience method is proposed. Firstly, the intra/inter mode decision is implemented using macro-block(MB) refresh, and then redundant picture and reference frame selection are utilized together to realize the redundant coding. The estimated error propagation distortion and bit consumption of refresh MB are used for the mode and reference frame decision of refresh MB. Secondly, by analyzing the statistical property in the successive frames, the error propagation distortion and bit consumption are formulated as a function of temporal distance. Encoding parameters of the current frame is determined by the estimated error propagation distortion and bit consumption. Thirdly, by comparing the rate-distortion cost of different combinations, proper selection of error resilience method is performed before the encoding process of the current frame. Finally, the MB mode and bit distribution of the primary picture are analyzed for the derivation of the texture information. The motion information is subsequently incorporated for the calculation of video content complexity to implement the content based redundant coding. Experimental results demonstrate that the proposed algorithm achieves significant performance gains over the LA-RDO and HRP method when video is transmitted over error-prone channel.展开更多
By exploiting the structural features of L1C messages,a novel Early Termination( ET) strategy is proposed to speed up the decoding of low-density parity-check( LDPC) codes in the GPS system. The proposed strategy is b...By exploiting the structural features of L1C messages,a novel Early Termination( ET) strategy is proposed to speed up the decoding of low-density parity-check( LDPC) codes in the GPS system. The proposed strategy is based on the cyclic redundancy check( CRC) of the messages in the subframes 2 and 3. The simulation results show that average number of iterations of the proposed strategy is less than that of the standard ET strategy,with nearly no degradation in decoding performance. Besides,the proposed ET strategy can be efficiently implemented in a sequential or parallel manner. Thus,the proposed ET strategy is attractive for practical purposes.展开更多
Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemen...Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.展开更多
Many communication systems use the cyclic redundancy code (CRC) technique for protecting key data fields from transmission errors by enabling both single-bit error correction and multi-bit error detection. The look-...Many communication systems use the cyclic redundancy code (CRC) technique for protecting key data fields from transmission errors by enabling both single-bit error correction and multi-bit error detection. The look-up table design is very important for the error-correction implementation. This paper presents a CRC look-up table optimization method for single-bit error correction. The optimization method minimizes the address length of the pre-designed look-up table while satisfying certain restrictions. The circuit implementation is also presented to show the feasibility of the method in the application specific integrated circuit design. An application of the optimization method in the generic framing procedure protocol is implemented using field programmable gatearrays. The result shows that the memory address length has been minimized, while keeping a very simple circuit implementation.展开更多
基金Supported by Innovation Fund of China(00C26224210641)
文摘A Robust Adaptive Video Encoder (RAVE) based on human visual model is proposed. The encoder combines the best features of Fine Granularity Scalable (FGS) coding, framedropping coding, video redundancy coding, and human visual model. According to packet loss and available bandwidth of the network, the encoder adjust the output bit rate by jointly adapting quantization step-size instructed by human visual model, rate shaping, and periodically inserting key frame. The proposed encoder is implemented based on MPEG-4 encoder and is compared with the case of a conventional FGS algorithm. It is shown that RAVE is a very efficient robust video encoder that provides improved visual quality for the receiver and consumes equal or less network resource. Results are confirmed by subjective tests and simulation tests.
基金Project(40927001)supported by the National Natural Science Foundation of ChinaProject(2011R09021-06)supported by the Program of Key Scientific and Technological Innovation Team of Zhejiang Province,ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rate-distortion based error resilience method is proposed. Firstly, the intra/inter mode decision is implemented using macro-block(MB) refresh, and then redundant picture and reference frame selection are utilized together to realize the redundant coding. The estimated error propagation distortion and bit consumption of refresh MB are used for the mode and reference frame decision of refresh MB. Secondly, by analyzing the statistical property in the successive frames, the error propagation distortion and bit consumption are formulated as a function of temporal distance. Encoding parameters of the current frame is determined by the estimated error propagation distortion and bit consumption. Thirdly, by comparing the rate-distortion cost of different combinations, proper selection of error resilience method is performed before the encoding process of the current frame. Finally, the MB mode and bit distribution of the primary picture are analyzed for the derivation of the texture information. The motion information is subsequently incorporated for the calculation of video content complexity to implement the content based redundant coding. Experimental results demonstrate that the proposed algorithm achieves significant performance gains over the LA-RDO and HRP method when video is transmitted over error-prone channel.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271423)
文摘By exploiting the structural features of L1C messages,a novel Early Termination( ET) strategy is proposed to speed up the decoding of low-density parity-check( LDPC) codes in the GPS system. The proposed strategy is based on the cyclic redundancy check( CRC) of the messages in the subframes 2 and 3. The simulation results show that average number of iterations of the proposed strategy is less than that of the standard ET strategy,with nearly no degradation in decoding performance. Besides,the proposed ET strategy can be efficiently implemented in a sequential or parallel manner. Thus,the proposed ET strategy is attractive for practical purposes.
基金Supported by the National 973 Programs (2013CB329104)the National Natural Science Foundations of China (No. 61071090, No. 61171093)+3 种基金the Postgraduate Innovation Programs of Scientific Research of Jiangsu Province (CXZZ11_0388)Jiangsu Province Natural Science Foundation Key Projects (11KJA510001)National Science and Technology Key Projects (2011ZX03005-004-003)Jiangsu 973 Projects (BK2011027)
文摘Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.
文摘Many communication systems use the cyclic redundancy code (CRC) technique for protecting key data fields from transmission errors by enabling both single-bit error correction and multi-bit error detection. The look-up table design is very important for the error-correction implementation. This paper presents a CRC look-up table optimization method for single-bit error correction. The optimization method minimizes the address length of the pre-designed look-up table while satisfying certain restrictions. The circuit implementation is also presented to show the feasibility of the method in the application specific integrated circuit design. An application of the optimization method in the generic framing procedure protocol is implemented using field programmable gatearrays. The result shows that the memory address length has been minimized, while keeping a very simple circuit implementation.