期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CONCISE REPRESENTATIONS FOR ASSOCIATION RULES IN MULTI-LEVEL DATASETS
1
作者 Gavin SHAW 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2009年第1期53-70,共18页
Association rule mining plays an important role in knowledge and information discovery. Often for a dataset, a huge number of rules can be extracted, but many of them are redundant, especially in the case of multi-lev... Association rule mining plays an important role in knowledge and information discovery. Often for a dataset, a huge number of rules can be extracted, but many of them are redundant, especially in the case of multi-level datasets. Mining non-redundant rules is a promising approach to solve this problem. However, existing work (Pasquier et al. 2005, Xu & Li 2007) is only focused on single level datasets. In this paper, we firstly present a definition for redundancy and a concise representation called Reliable basis for representing non-redundant association rules, then we propose an extension to the previous work that can remove hierarchically redundant rules from multi-level datasets. We also show that the resulting concise representation of non-redundant association rules is lossless since all association rules can be derived from the representation. Experiments show that our extension can effectively generate multilevel non-redundant rules. 展开更多
关键词 Association rule mining redundant association rules closed itemsets multi-level datasets
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部