A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeaste...A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeastern China. Mean monthly ET0 and yearly ET0 from 1961 to 2005 were estimated with the FAO-56 Penman-Monteith Equation. A 45-year historical dataset of average monthly maximum/minimum air temperature, mean air temperature, wind speed, sunshine hours and relative humidity from 15 meteorological stations was used in the analysis. Results show that: 1) Sensitivity coefficients of wind speed, air temperature and sunshine hours were positive except for those of air tem- perature of Arxan Meteorological Station, while those of relative humidity were all negative. Relative humidity was the most sensitive variable in general for the Tao'er River Basin, followed by sunshine hours, wind speed and air tem- perature. 2) Similar to climate variable, monthly sensitivity coefficients exhibit large annual fluctuations. 3) Sensitivity coefficients for four climate variables all showed significant trends in seasonal/yearly series. Also, sensitivity coefficients of air temperature, sunshine hours and wind speed all showed significant trends in spring. 4) Among all sensitiv- ity coefficients, the average yearly sensitivity coefficient of relative humidity was highest throughout the basin and showed largest spatial variability. Longitudinal distribution of sensitivity coefficients for air temperature, relative hu- midity and sunshine hours was also found, which was similar to the distribution of the three climate variables.展开更多
This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ETo) was calculated with the FAO-56 stand...This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ETo) was calculated with the FAO-56 standard Penman-Monteith formula. A test of normality was performed with Statistica 6.0 software, isotropic and anisotropic semi-variogram analysis was conducted with the GS+ (geostatistics for the environmental sciences) system for Windows 7.0, and the characteristics of spatial variation of daily ETo were obtained. The following results can be obtained Daily ETo for different periods on the Tibetan Plateau are distributed normally; Except for daily ETo in the E-W (east-west) direction in the summer, which showed a slight negative correlation with distance change, the Moran's indexes of daily ETo for different periods in all directions on the Tibetan Plateau within a 100-km distance were positive, demonstrating a positive correlation with distance change; Variograms of daily ETo in June, the dry season, the wet season, as well as annual average daily ETo fit well with the Gaussian model; A variogram of daily ETo in December fit well with the exponential model; Variograms of daily ETo for the four seasons fit well with the linear With sill model.展开更多
Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water de...Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water demand.Iran,with large climatic variability,is experiencing a serious water crisis due to limited water resources and inefficient agriculture.In order to overcome the issue of uneven distribution of weather stations,gridded Climatic Research Unit(CRU)data was applied to analyze the changes in potential evapotranspiration(PET),effective precipitation(EFFPRE)and WREQ.Validation of data using in situ observation showed an acceptable performance of CRU in Iran.Changes in PET,EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016.Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast,more significant in summer and spring.However,EFFPRE decreased in the southeast,northeast,and northwest,especially in winter and spring.Analysis of annual trends revealed an upward trend in PET(14.32 mm/decade)and WREQ(25.50 mm/decade),but a downward trend in EFFPRE(-11.8 mm/decade)over the second period.Changes in PET,EFFPRE and WREQ in winter have the impact on the annual trend.Among climate variables,WREQ showed a significant correlation(r=0.59)with minimum temperature.The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran.With all changes in PET and WREQ,immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.展开更多
Reference crop evapotranspiration(ET0)is an important parameter in the research of farmland irrigation management,crop water demand estimation and water balance in scarce data areas,therefore,it is very important to s...Reference crop evapotranspiration(ET0)is an important parameter in the research of farmland irrigation management,crop water demand estimation and water balance in scarce data areas,therefore,it is very important to study the factors affecting the spatial variation of ET0.In this paper,the Penman-Monteith formula was used to calculate ET0 which is the dependent variable of elevation(Elev),daily maximum temperature(T_(max)),daily minimum temperature(Tmin),daily average temperature(T_(mean)),wind speed(U_(2)),sunshine duration(SD)and relative humidity(RH).The sensitivity analysis of ET0 was performed using a Geodetector method based on spatial stratified heterogeneity.The applicability of Geodetector in sensitivity analysis of ET0 was verified by comparing it with existing research results.Results show that RH,Tmax,SD,and Tmean are the main factors affecting ET0 in Northwest China,and RH has the best explanatory power for the spatial distribu‐tion of ET0.Geodetector has a unique advantage in sensitivity analysis,because it can analyze the synergistic effect of two factors on the change of ET0.The interactive detector of Geodetector revealed that the synergistic effect of RH and Tmean on ET0 is very significant,and can explain 89%of the spatial variation of ET0.This research provides a new method for sensitivity analysis of ET0 changes.展开更多
Reference crop evapotranspiration (ET_0) is a critical part in water cycle and water balance of ecosystem, which is greatly important to effective utilization of agricultural water resources and for making reasonable ...Reference crop evapotranspiration (ET_0) is a critical part in water cycle and water balance of ecosystem, which is greatly important to effective utilization of agricultural water resources and for making reasonable irrigation system. In order to propose a suitable method for computing ET_0 in North Xinjiang, based on daily meteorological data from May 1 to September30, 2010 provided by Weather Station of Fuhai County, we used FAO56 Penman-Monteith as the standard formula to compute ET_0, compared the differences and relations between such the method and other 4 calculation formulas, and analyzed the cause of the deviation, finally evaluated the applicability of computational method in North Xinjiang. The results showed that the calculation results by FA056 PM Method was approximate to that by FAO Penman method and IA method, of which the relative error was 9.26% and 13.51% respectively, the ET_0 results calculated by PT method and HS method were generally greater than the results by FAO56 PM, and their deviation was very obvious.展开更多
Water resource is one of the major constraints to agricultural production in central and western Inner Mongolia, where are characteristic by arid and semi-arid climate. Reference crop evapotranspiration (ETo) is an ...Water resource is one of the major constraints to agricultural production in central and western Inner Mongolia, where are characteristic by arid and semi-arid climate. Reference crop evapotranspiration (ETo) is an important part of water cycle in agricultural ecosystem, which has a direct effect on crop growth and yield. The implications of climate change on ETo are of high importance for agriculture regarding water management and irrigation scheduling. The aim of this study was to analyze the variations in climate and its effect on ETo in central and western Inner Mongolia over the period 1961 to 2009 For this purpose, data in ten meteorological stations across study area were collected and the FAO Penman-Monteith 56 method was used. Results showed that the average temperature, maximum temperature and minimum temperature increased by 0.49~C, 0.31~C and 0.70~C per decade during 1961-2009, respectively. In comparison, the daily temperature range decreased by 0.38~C per decade. The air relative humidity, sunshine hour, and 10-m wind speed decreased generally by 0.58%, 40.11 h, and 0.35 rrds per decade, respectively. Annual mean ETo decreased significantly at a rate of 12.2 mm per decade over the periods, this was mainly due to the decrease in wind speed in the study area. The decrease in wind speed may balance the effect of the increase in air temperature on ETo. Variations in spatial distribution of ETo and its main controlling factor were also detected among ten stations. Our results suggested that spatial and temporal distribution of ETo should be considered regarding the optimization of water resource management for agriculture in central and western Inner Mongolia under foreseen climate change.展开更多
The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotr...The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.展开更多
This paper investigates calibration of Hargreaves equation in Xiliaohe Basin. Twelve meteorologicalgauges located within Xiliaohe Basin in Northeast China were monitored during 1970 and 2014 providing continuous recor...This paper investigates calibration of Hargreaves equation in Xiliaohe Basin. Twelve meteorologicalgauges located within Xiliaohe Basin in Northeast China were monitored during 1970 and 2014 providing continuous records of meteorological data. Taking daily ET<sub>0</sub> calculated by Penman-Montieth equation as the benchmark, the error of Hargreaves equation for computing ET<sub>0</sub> was evaluated and the investigation on regional calibration of Hargreaves equation was carried out. Results showed there was an obvious difference between the calculating results of Hargreaves and Penman-Monteith equation. The estimation of the former was obviously higher during June and September while lower during the rest time in a year. The three empirical parameters of the Hargreaves equation were calibrated using the SCE-UA (Shuffled Complex Evolution) method, and the calibrated Hargreaves equation showed an obvious promotion in the accuracy both during the calibration and verification period.展开更多
℃ Climate change is likely to affect hydrological cycle through precipitation, evapotranspiration, soil moisture etc. In the present study, an attempt has been made to study the climate change and the sensitivity of...℃ Climate change is likely to affect hydrological cycle through precipitation, evapotranspiration, soil moisture etc. In the present study, an attempt has been made to study the climate change and the sensitivity of estimated evapotranspiration to each climatic variable for a semi-arid region of Beijing in North China using data set from 1951 to 2010. Penman-Monteith method was used to calculate reference crop evapotranspiration (ETo). Changes of ETo to each climatic variable was estimated using a sensitivity analysis method proposed in this study. Results show that in the past 60 years, mean temperature and vapor pressure deficit (VPD) were significantly increasing, relative humidity and sunshine hours were significantly decreasing, and wind speed greatly oscillated without a significant trend. Total precipitation was significantly decreasing in corn season (from June to September), but it was increasing in wheat season (from October to next May). The change rates of tem- perature, relative humidity, VPD, wind speed, annual total precipitation, sunshine hours and solar radiation were 0.42℃, 1.47%, 0.04 kPa, 0.05 m.s-1, 25.0 mm, 74.0 hours and 90.7 MJ.m-2 per decade, respectively. In the past 60 years, yearly ETo was increasing with a rate of 19.5 mm per decade, and total ETos in wheat and corn seasons were increasing with rates of 13.1 and 5.3 mm per decade, respectively. Sensitivity analysis showed that mean air temperature was the first key factor for ETo change in the past 60 years, causing an annual total ETo increase of 7.4%, followed by relative humidity (5.5%) and sunshine hours (-3.1%); the less sensitivity factors were wind speed (0.7%), minimum temperature (-0.3%) and maximum temperature (-0.2%). A greater reduction of total ETo (12.3%) in the past 60 years was found in wheat season, mainly because of mean temperature (8.6%) and relative hu- midity (5.4%), as compared to a reduction of 6.0% in ETo during corn season due to sunshinehours (-6.9%), relative humidity (4.7%) and temperature (4.5%). Increasing precipitation in the wheat season will improve crop growth, while decreasing precipitation and increasing ETo in the corn season induces a great pressure for local government and farmers to use water more efficiently by widely adopting water-saving technologies in the future.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40571029)
文摘A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeastern China. Mean monthly ET0 and yearly ET0 from 1961 to 2005 were estimated with the FAO-56 Penman-Monteith Equation. A 45-year historical dataset of average monthly maximum/minimum air temperature, mean air temperature, wind speed, sunshine hours and relative humidity from 15 meteorological stations was used in the analysis. Results show that: 1) Sensitivity coefficients of wind speed, air temperature and sunshine hours were positive except for those of air tem- perature of Arxan Meteorological Station, while those of relative humidity were all negative. Relative humidity was the most sensitive variable in general for the Tao'er River Basin, followed by sunshine hours, wind speed and air tem- perature. 2) Similar to climate variable, monthly sensitivity coefficients exhibit large annual fluctuations. 3) Sensitivity coefficients for four climate variables all showed significant trends in seasonal/yearly series. Also, sensitivity coefficients of air temperature, sunshine hours and wind speed all showed significant trends in spring. 4) Among all sensitiv- ity coefficients, the average yearly sensitivity coefficient of relative humidity was highest throughout the basin and showed largest spatial variability. Longitudinal distribution of sensitivity coefficients for air temperature, relative hu- midity and sunshine hours was also found, which was similar to the distribution of the three climate variables.
基金supported by the Natural Science Foundation for Youths of Tibet Autonomous Region of China (Grant No. XZ-20080383)
文摘This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ETo) was calculated with the FAO-56 standard Penman-Monteith formula. A test of normality was performed with Statistica 6.0 software, isotropic and anisotropic semi-variogram analysis was conducted with the GS+ (geostatistics for the environmental sciences) system for Windows 7.0, and the characteristics of spatial variation of daily ETo were obtained. The following results can be obtained Daily ETo for different periods on the Tibetan Plateau are distributed normally; Except for daily ETo in the E-W (east-west) direction in the summer, which showed a slight negative correlation with distance change, the Moran's indexes of daily ETo for different periods in all directions on the Tibetan Plateau within a 100-km distance were positive, demonstrating a positive correlation with distance change; Variograms of daily ETo in June, the dry season, the wet season, as well as annual average daily ETo fit well with the Gaussian model; A variogram of daily ETo in December fit well with the exponential model; Variograms of daily ETo for the four seasons fit well with the linear With sill model.
文摘Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water demand.Iran,with large climatic variability,is experiencing a serious water crisis due to limited water resources and inefficient agriculture.In order to overcome the issue of uneven distribution of weather stations,gridded Climatic Research Unit(CRU)data was applied to analyze the changes in potential evapotranspiration(PET),effective precipitation(EFFPRE)and WREQ.Validation of data using in situ observation showed an acceptable performance of CRU in Iran.Changes in PET,EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016.Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast,more significant in summer and spring.However,EFFPRE decreased in the southeast,northeast,and northwest,especially in winter and spring.Analysis of annual trends revealed an upward trend in PET(14.32 mm/decade)and WREQ(25.50 mm/decade),but a downward trend in EFFPRE(-11.8 mm/decade)over the second period.Changes in PET,EFFPRE and WREQ in winter have the impact on the annual trend.Among climate variables,WREQ showed a significant correlation(r=0.59)with minimum temperature.The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran.With all changes in PET and WREQ,immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.
基金the Inner Mongolia Key Research and Development program(zdzx2018057)the National Key Research and Development Program(2016YFC0400908).
文摘Reference crop evapotranspiration(ET0)is an important parameter in the research of farmland irrigation management,crop water demand estimation and water balance in scarce data areas,therefore,it is very important to study the factors affecting the spatial variation of ET0.In this paper,the Penman-Monteith formula was used to calculate ET0 which is the dependent variable of elevation(Elev),daily maximum temperature(T_(max)),daily minimum temperature(Tmin),daily average temperature(T_(mean)),wind speed(U_(2)),sunshine duration(SD)and relative humidity(RH).The sensitivity analysis of ET0 was performed using a Geodetector method based on spatial stratified heterogeneity.The applicability of Geodetector in sensitivity analysis of ET0 was verified by comparing it with existing research results.Results show that RH,Tmax,SD,and Tmean are the main factors affecting ET0 in Northwest China,and RH has the best explanatory power for the spatial distribu‐tion of ET0.Geodetector has a unique advantage in sensitivity analysis,because it can analyze the synergistic effect of two factors on the change of ET0.The interactive detector of Geodetector revealed that the synergistic effect of RH and Tmean on ET0 is very significant,and can explain 89%of the spatial variation of ET0.This research provides a new method for sensitivity analysis of ET0 changes.
基金Supported by Key Scientific and Technological Research and Development Program of Xinjiang(201531115)Special Fund for Scientific Research of China Institute of Water Resources and Hydropower Research(MK2016J10)
文摘Reference crop evapotranspiration (ET_0) is a critical part in water cycle and water balance of ecosystem, which is greatly important to effective utilization of agricultural water resources and for making reasonable irrigation system. In order to propose a suitable method for computing ET_0 in North Xinjiang, based on daily meteorological data from May 1 to September30, 2010 provided by Weather Station of Fuhai County, we used FAO56 Penman-Monteith as the standard formula to compute ET_0, compared the differences and relations between such the method and other 4 calculation formulas, and analyzed the cause of the deviation, finally evaluated the applicability of computational method in North Xinjiang. The results showed that the calculation results by FA056 PM Method was approximate to that by FAO Penman method and IA method, of which the relative error was 9.26% and 13.51% respectively, the ET_0 results calculated by PT method and HS method were generally greater than the results by FAO56 PM, and their deviation was very obvious.
文摘Water resource is one of the major constraints to agricultural production in central and western Inner Mongolia, where are characteristic by arid and semi-arid climate. Reference crop evapotranspiration (ETo) is an important part of water cycle in agricultural ecosystem, which has a direct effect on crop growth and yield. The implications of climate change on ETo are of high importance for agriculture regarding water management and irrigation scheduling. The aim of this study was to analyze the variations in climate and its effect on ETo in central and western Inner Mongolia over the period 1961 to 2009 For this purpose, data in ten meteorological stations across study area were collected and the FAO Penman-Monteith 56 method was used. Results showed that the average temperature, maximum temperature and minimum temperature increased by 0.49~C, 0.31~C and 0.70~C per decade during 1961-2009, respectively. In comparison, the daily temperature range decreased by 0.38~C per decade. The air relative humidity, sunshine hour, and 10-m wind speed decreased generally by 0.58%, 40.11 h, and 0.35 rrds per decade, respectively. Annual mean ETo decreased significantly at a rate of 12.2 mm per decade over the periods, this was mainly due to the decrease in wind speed in the study area. The decrease in wind speed may balance the effect of the increase in air temperature on ETo. Variations in spatial distribution of ETo and its main controlling factor were also detected among ten stations. Our results suggested that spatial and temporal distribution of ETo should be considered regarding the optimization of water resource management for agriculture in central and western Inner Mongolia under foreseen climate change.
基金supported by the Innovation Program of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (201003013)the National Basic Research Program of China(2010CB951702)
文摘The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.
文摘This paper investigates calibration of Hargreaves equation in Xiliaohe Basin. Twelve meteorologicalgauges located within Xiliaohe Basin in Northeast China were monitored during 1970 and 2014 providing continuous records of meteorological data. Taking daily ET<sub>0</sub> calculated by Penman-Montieth equation as the benchmark, the error of Hargreaves equation for computing ET<sub>0</sub> was evaluated and the investigation on regional calibration of Hargreaves equation was carried out. Results showed there was an obvious difference between the calculating results of Hargreaves and Penman-Monteith equation. The estimation of the former was obviously higher during June and September while lower during the rest time in a year. The three empirical parameters of the Hargreaves equation were calibrated using the SCE-UA (Shuffled Complex Evolution) method, and the calibrated Hargreaves equation showed an obvious promotion in the accuracy both during the calibration and verification period.
基金Open Research Funds of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, No.IWHR-SKL-201105 National Natural Science Foundation of China, No.51179005 Fundamental Re- search Funds for the Central Universities, No.2009SD-10
文摘℃ Climate change is likely to affect hydrological cycle through precipitation, evapotranspiration, soil moisture etc. In the present study, an attempt has been made to study the climate change and the sensitivity of estimated evapotranspiration to each climatic variable for a semi-arid region of Beijing in North China using data set from 1951 to 2010. Penman-Monteith method was used to calculate reference crop evapotranspiration (ETo). Changes of ETo to each climatic variable was estimated using a sensitivity analysis method proposed in this study. Results show that in the past 60 years, mean temperature and vapor pressure deficit (VPD) were significantly increasing, relative humidity and sunshine hours were significantly decreasing, and wind speed greatly oscillated without a significant trend. Total precipitation was significantly decreasing in corn season (from June to September), but it was increasing in wheat season (from October to next May). The change rates of tem- perature, relative humidity, VPD, wind speed, annual total precipitation, sunshine hours and solar radiation were 0.42℃, 1.47%, 0.04 kPa, 0.05 m.s-1, 25.0 mm, 74.0 hours and 90.7 MJ.m-2 per decade, respectively. In the past 60 years, yearly ETo was increasing with a rate of 19.5 mm per decade, and total ETos in wheat and corn seasons were increasing with rates of 13.1 and 5.3 mm per decade, respectively. Sensitivity analysis showed that mean air temperature was the first key factor for ETo change in the past 60 years, causing an annual total ETo increase of 7.4%, followed by relative humidity (5.5%) and sunshine hours (-3.1%); the less sensitivity factors were wind speed (0.7%), minimum temperature (-0.3%) and maximum temperature (-0.2%). A greater reduction of total ETo (12.3%) in the past 60 years was found in wheat season, mainly because of mean temperature (8.6%) and relative hu- midity (5.4%), as compared to a reduction of 6.0% in ETo during corn season due to sunshinehours (-6.9%), relative humidity (4.7%) and temperature (4.5%). Increasing precipitation in the wheat season will improve crop growth, while decreasing precipitation and increasing ETo in the corn season induces a great pressure for local government and farmers to use water more efficiently by widely adopting water-saving technologies in the future.