Power consumption is the energy source of the impact on fibers or pulp during low-consistency(LC)pulp refining,and the strength of refining affects refining quality and efficiency.The pulp properties,operating paramet...Power consumption is the energy source of the impact on fibers or pulp during low-consistency(LC)pulp refining,and the strength of refining affects refining quality and efficiency.The pulp properties,operating parameters,and bar parameters of the refiner plates are important parameters affecting refining efficiency,which can be defined as the ratio of net to total refining power.In this study,LC refining trials for pulps with different consistencies and fiber lengths were conducted using five isometric straightbar plates with different bar angles to explore the influences of the plate bar angle and pulp properties on the no-load power,impact capacity on fibers and refining efficiency.It was found that the no-load power of the LC refining process decreased with an increase in the plate bar angle while increased when pulp with higher consistency was refined under the same refining conditions.However,the effect of pulp consistency on the no-load power can be neglected when refining is conducted using plates with larger bar angles.Meanwhile,a critical bar angle for straight-bar plates in LC refining may exist,which has the strongest impact on the pulp and highest refining efficiency under the same refining conditions.In addition,the impact capacity of the plate on the pulp and refining efficiency in LC refining can be enhanced by appropriately increasing the pulp consistency and average fiber length when the bar angle of the refiner plate with a sector angle of 40°is less than 30°.Therefore,the efficiency and power consumption of the LC refining process can be adjusted by optimizing the pulp consistency and bar parameters of the refining plates.展开更多
The Al-2.5C master alloy is prepared to investigate the effect of the Al4C3 particle size distribution on the refining efficiency of the AZ31 alloy. The results indicate that the Al4C3 particles are potent nucleation ...The Al-2.5C master alloy is prepared to investigate the effect of the Al4C3 particle size distribution on the refining efficiency of the AZ31 alloy. The results indicate that the Al4C3 particles are potent nucleation substrates for primary α-Mg grains. With 1.0 wt% master alloy addition, the grain size is reduced from 204 to 70 μm. The grain refining efficiency of the Al4C3 particles on the AZ31 alloy is calculated to be 0.04%-0.75%. Such low refining efficiency is mainly attributed to the size distribution of the Al4C3 particles. The particle sizes are in the range from 0.18 to 7.08 μm, and their distribution is well fitted by a log-normal function. The optimum particle size range for significant grain refinement is proposed to be around 5.0-7.08 μm in the present conditions.展开更多
The effects of superheating temperature on the grain refining efficiency of Ti existing in electrolytic low-titanium aluminum(ELTA)without and with the Al-4B addition and the Al-5Ti-1B master alloy in pure Al were com...The effects of superheating temperature on the grain refining efficiency of Ti existing in electrolytic low-titanium aluminum(ELTA)without and with the Al-4B addition and the Al-5Ti-1B master alloy in pure Al were comparatively investigated. The results show that the Ti existing in ELTA without Al-4B addition exhibits a certain grain refining efficiency when the melt superheating temperature is lower,but the efficiency decreases rapidly when the superheating temperature is higher.The grain refining efficiency of the Al-5Ti-1B master alloy is better than that of the Ti existing in ELTA without Al-4B addition at any superheating temperature,but it also decreases obviously with the increase of the superheating temperature.One important reason is that the TiB2 particles coming from the Al-5Ti-1B master alloy can settle down at the bottom of the Al melt easily when the superheating temperature is increased,thus decrease the number of the potent heterogeneous nuclei retained in the Al melt.If the Al-4B master alloy is added to the ELTA melt,the grain refining efficiency of the Ti existing in ELTA can be improved significantly, and does not decrease with the increase of the superheating temperature.This perhaps provides us a possible method to suppress the effect of the superheated melt on the microstructures of aluminum..展开更多
基金funding from the National Natural Science Foundation of China (Grant No. 50745048)Shaanxi Provincial Key Research and Development Project (Grant No. 2020 GY-105)Natural Science Basic Research Program of Shaanxi (Grant No. 2023-JC-QN-0154)。
文摘Power consumption is the energy source of the impact on fibers or pulp during low-consistency(LC)pulp refining,and the strength of refining affects refining quality and efficiency.The pulp properties,operating parameters,and bar parameters of the refiner plates are important parameters affecting refining efficiency,which can be defined as the ratio of net to total refining power.In this study,LC refining trials for pulps with different consistencies and fiber lengths were conducted using five isometric straightbar plates with different bar angles to explore the influences of the plate bar angle and pulp properties on the no-load power,impact capacity on fibers and refining efficiency.It was found that the no-load power of the LC refining process decreased with an increase in the plate bar angle while increased when pulp with higher consistency was refined under the same refining conditions.However,the effect of pulp consistency on the no-load power can be neglected when refining is conducted using plates with larger bar angles.Meanwhile,a critical bar angle for straight-bar plates in LC refining may exist,which has the strongest impact on the pulp and highest refining efficiency under the same refining conditions.In addition,the impact capacity of the plate on the pulp and refining efficiency in LC refining can be enhanced by appropriately increasing the pulp consistency and average fiber length when the bar angle of the refiner plate with a sector angle of 40°is less than 30°.Therefore,the efficiency and power consumption of the LC refining process can be adjusted by optimizing the pulp consistency and bar parameters of the refining plates.
基金supported by the National Key Research and Development Program of China(No.2016YFB0701204)the project(DUT15JJ(G)01)supported by the Fundamental Research Funds for the Central Universities
文摘The Al-2.5C master alloy is prepared to investigate the effect of the Al4C3 particle size distribution on the refining efficiency of the AZ31 alloy. The results indicate that the Al4C3 particles are potent nucleation substrates for primary α-Mg grains. With 1.0 wt% master alloy addition, the grain size is reduced from 204 to 70 μm. The grain refining efficiency of the Al4C3 particles on the AZ31 alloy is calculated to be 0.04%-0.75%. Such low refining efficiency is mainly attributed to the size distribution of the Al4C3 particles. The particle sizes are in the range from 0.18 to 7.08 μm, and their distribution is well fitted by a log-normal function. The optimum particle size range for significant grain refinement is proposed to be around 5.0-7.08 μm in the present conditions.
文摘The effects of superheating temperature on the grain refining efficiency of Ti existing in electrolytic low-titanium aluminum(ELTA)without and with the Al-4B addition and the Al-5Ti-1B master alloy in pure Al were comparatively investigated. The results show that the Ti existing in ELTA without Al-4B addition exhibits a certain grain refining efficiency when the melt superheating temperature is lower,but the efficiency decreases rapidly when the superheating temperature is higher.The grain refining efficiency of the Al-5Ti-1B master alloy is better than that of the Ti existing in ELTA without Al-4B addition at any superheating temperature,but it also decreases obviously with the increase of the superheating temperature.One important reason is that the TiB2 particles coming from the Al-5Ti-1B master alloy can settle down at the bottom of the Al melt easily when the superheating temperature is increased,thus decrease the number of the potent heterogeneous nuclei retained in the Al melt.If the Al-4B master alloy is added to the ELTA melt,the grain refining efficiency of the Ti existing in ELTA can be improved significantly, and does not decrease with the increase of the superheating temperature.This perhaps provides us a possible method to suppress the effect of the superheated melt on the microstructures of aluminum..