Optical surface scattering analyses based on diffractive optics (DO) are typically applied to one surface;however, there is a need for simulating surface scattering losses for devices having many surface interactions ...Optical surface scattering analyses based on diffractive optics (DO) are typically applied to one surface;however, there is a need for simulating surface scattering losses for devices having many surface interactions such as light pipes. Light pipes are often simulated with geometric optics (GO) using ray tracing, where surface scattering is driven by the surface slope distribution. In the DO case, surface scattering analyses depend on the spatial frequency distribution and amplitude as well as wavelength, with the sinusoidal grating as a fundamental basis. A better understanding of the link, or transition, between DO and GO scattering domains would be helpful for efficiently incorporating scattering loss analyses into ray trace simulations. A formula for the root-mean-square (rms) scattered angle width of a sinusoidal reflection grating that depends only on the surface rms slope is derived from the nonparaxial scalar diffraction theory, thereby linking it to GO. The scatter angle’s mean and rms width are evaluated over a range of grating amplitudes and periods using scalar theory and full vector simulations from the COMSOL® wave optic module for a sinusoidal reflection grating. The conditions under which the diffraction-based solution closely approximates the GO solution, as predicted by the rms slope, are identified. Close agreement is shown between the DO and GO solutions for the same surface rms slope scattering loss due to angular filtering near the critical angle of a total internal reflection (TIR) glass-to-air interface.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into seve...Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems.展开更多
The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under...The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.展开更多
In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an opt...In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.展开更多
Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employ...Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells.展开更多
Objective: To compare refractive outcomes using the Lenstar optical low-coherence reflectometry (OLCR) biometer in the following cases: phacovitrectomy for epiretinal membranes and macular holes (phacovitrectomy group...Objective: To compare refractive outcomes using the Lenstar optical low-coherence reflectometry (OLCR) biometer in the following cases: phacovitrectomy for epiretinal membranes and macular holes (phacovitrectomy group);sequential cataract surgery after prior vitrectomy (sequential-phaco group);routine cataract surgery (phaco-only group). Methods: This study was a retrospective, consecutive comparative series. Main outcomes were mean prediction error (ME) and mean absolute prediction error (MAE). Secondary out-come was the variance in prediction error. Results: ME was significantly more myopic in the phacovitrectomy group (-0.08 ± 0.77D, mean ± SD, p = 0.04) and the sequentialphaco group (-0.09 ± 0.51D, p = 0.01) compared to the phaco-only group (+0.24 ± 0.53D). MAEs were not statistically different across the 3 groups. The phacovitrectomy group had a wider variance in prediction errors compared to the phaco-only group (p = 0.03). Conclusions: There is a myopic shift of approximately -0.3D in both phacovitrectomy and sequential-phaco cases compared to phaco-only cases when using OLCR-based optical biometry. Phacovitrectomy outcomes are more variable compared to phaco-only eyes.展开更多
GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin ...GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.展开更多
A symmetric plasmonie structure consisting of metal-insulator metal waveguide, groove studied, which supports double Fano resonances deriving from two different mechanisms and slot cavities is One of the Fano resonanc...A symmetric plasmonie structure consisting of metal-insulator metal waveguide, groove studied, which supports double Fano resonances deriving from two different mechanisms and slot cavities is One of the Fano resonances originates from the interference between the resonances of groove and slot cavities, and the other comes from the interference between slot cavities. The spectral line shapes and the peaks of the double Fano resonances can be modulated by changing the length of the slot cavities and the height of the groove. Furthermore, the wavelength of the resonance peak has a linear relationship with the length of the slot cavities. The proposed plasmonic nanosensor possesses a sensitivity of 800nm/RIU and a figure of merit of 3150, which may have important applications in switches, sensors, and nonlinear devices.展开更多
Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical effici...Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.展开更多
Novel transparent ceramics of Zr4+ doped Ba(Mg,Ta)O3(BMT)with a high refractive index of 2.037 at 587.56 nm were successfully fabricated via high temperature solid-state-reaction sintering method.To make it transparen...Novel transparent ceramics of Zr4+ doped Ba(Mg,Ta)O3(BMT)with a high refractive index of 2.037 at 587.56 nm were successfully fabricated via high temperature solid-state-reaction sintering method.To make it transparent,the pure cubic Ba(Zr,Mg,Ta)O3 phases(BZMT)were realized in advance by skillfully modulating the lattice structure of BMT from trigonal symmetric to cubic symmetric through doping Zr4+ into the lattice of BMT crystal.Highly optical transmittance of 74% at 650 n,,which hit the upper limit of the theory,was achieved for BZMT.Both abbe number of 23.4 and the bandgap Eg of 3.22 eV have been calculated.展开更多
Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been reported previously, however a satisfying theoretical explanation for it is still absent. In this pape...Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been reported previously, however a satisfying theoretical explanation for it is still absent. In this paper, a theoretical model about the temperature dependence of the refractive index of optical fibers is presented and it is in agreement with the previous experimental results. This work is a significant reference for the research and development of temperature sensors based on optical fiber delay lines.展开更多
The complex amplitude distribution which can compensate for the spherical aberration caused by mismatch on lnterthce between recording material and immersion material (air) on three-dimensional optical storage syste...The complex amplitude distribution which can compensate for the spherical aberration caused by mismatch on lnterthce between recording material and immersion material (air) on three-dimensional optical storage system is derived analytically and numerically. Comparison between two approaches is made. It is also shown how the depth of recording layer and position of reference plane are related to the phase distribution at reference plane and how the mismatch can be resolved by using a pure phase element.展开更多
A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar...A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be di- rectly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12x. Moreover, the designed wavelengths (450nm, 550nm and 65Onto) are spatially distributed on the focal plane, in good agree- ment with the theoretical results. The average optical effic/ency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficieneies.展开更多
In this article,we present a theoretical study on the sub-bandgap refractive indexes and optical properties of Sidopedβ-Ga_(2)O_(3) thin films based on newly developed models.The measured sub-bandgap refractive index...In this article,we present a theoretical study on the sub-bandgap refractive indexes and optical properties of Sidopedβ-Ga_(2)O_(3) thin films based on newly developed models.The measured sub-bandgap refractive indexes ofβ-Ga_(2)O_(3) thin film are explained well with the new model,leading to the determination of an explicit analytical dispersion of refractive indexes for photon energy below an effective optical bandgap energy of 4.952 eV for theβ-Ga_(2)O_(3) thin film.Then,the oscillatory structures in long wavelength regions in experimental transmission spectra of Si-dopedβ-Ga_(2)O_(3) thin films with different Si doping concentrations are quantitively interpreted utilizing the determined sub-bandgap refractive index dispersion.Meanwhile,effective optical bandgap values of Si-dopedβ-Ga_(2)O_(3) thin films are further determined and are found to decrease with increasing the Si doping concentration as expectedly.In addition,the sub-bandgap absorption coefficients of Si-dopedβ-Ga_(2)O_(3) thin film are calculated under the frame of the Franz–Keldysh mechanism due to the electric field effect of ionized Si impurities.The theoretical absorption coefficients agree with the available experimental data.These key parameters obtained in the present study may enrich the present understanding of the sub-bandgap refractive indexes and optical properties of impurity-dopedβ-Ga_(2)O_(3) thin films.展开更多
In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson...In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.展开更多
We experimentally detect high-refractive-index media (n > 1.5) using a surface plasmon resonance (SPR) sensor with a diffraction grating. While SPR sensors are generally based on the attenuated total reflection met...We experimentally detect high-refractive-index media (n > 1.5) using a surface plasmon resonance (SPR) sensor with a diffraction grating. While SPR sensors are generally based on the attenuated total reflection method using metal films, here, we focus on a method using a diffraction grating, which can detect relatively higher refractive-index media and is suitable for device miniaturization. In this study, we used the rigorous coupled-wave analysis method to simulate the dependence of the reflectance on an incident angle for media with refractive index values up to 1.700. In the experiment, a medium (n = 1.660 - 1.700) was successfully detected using this grating. Under the conditions of the grating (period: 600 nm, Au thickness: 40 nm) using a red laser (λ: 635 nm), a sharp decline in the reflectance and a rise in the transmittance at certain angles were confirmed, demonstrating the extraordinary transmission enabled by SPR. Because excitation angles changed with changes in the refractive index, we concluded that this method can be applied to sensors that detect high-refractive-index media.展开更多
By use of the Keldysh non-equilibrium Green’s-function methods, the third harmonic susceptibilities of two polyaniline families, PANI-HCl and PANI-H 3PO 4, are calculated [ x (3) ( ω )≈10 -12 esu]. It was found tha...By use of the Keldysh non-equilibrium Green’s-function methods, the third harmonic susceptibilities of two polyaniline families, PANI-HCl and PANI-H 3PO 4, are calculated [ x (3) ( ω )≈10 -12 esu]. It was found that the third harmonic susceptibility of polyaniline strongly depends on the delocalization of the electrons. The refractive indices n ( λ =589 nm) of PANI-HCl and PANI-H 3PO 4 are calculated by use of three common methods (the Lorentz-Lorentz theoretical model, the Gladstone-Dale group contribution and the Vogel group correlation) based on group contributions to molar refraction. The calculated n values are varied from 1.31 to 1.42 for PANI-HCl and 1.36 to 1.45 for PANI-H 3PO 4.展开更多
To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium ...To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.展开更多
In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm ca...In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm can successfully achieve to design DOEs for beam shaping. Compared with conventional algorithm, this algorithm can provide faster convergence, more powerful ability to overcome local minimum problem and better shaping quality. By computer simulation, the result has shown that the DOEs designed by this algorithm has snch advantages as high uniformity at the main lobe, low profile error and steep edge.展开更多
文摘Optical surface scattering analyses based on diffractive optics (DO) are typically applied to one surface;however, there is a need for simulating surface scattering losses for devices having many surface interactions such as light pipes. Light pipes are often simulated with geometric optics (GO) using ray tracing, where surface scattering is driven by the surface slope distribution. In the DO case, surface scattering analyses depend on the spatial frequency distribution and amplitude as well as wavelength, with the sinusoidal grating as a fundamental basis. A better understanding of the link, or transition, between DO and GO scattering domains would be helpful for efficiently incorporating scattering loss analyses into ray trace simulations. A formula for the root-mean-square (rms) scattered angle width of a sinusoidal reflection grating that depends only on the surface rms slope is derived from the nonparaxial scalar diffraction theory, thereby linking it to GO. The scatter angle’s mean and rms width are evaluated over a range of grating amplitudes and periods using scalar theory and full vector simulations from the COMSOL® wave optic module for a sinusoidal reflection grating. The conditions under which the diffraction-based solution closely approximates the GO solution, as predicted by the rms slope, are identified. Close agreement is shown between the DO and GO solutions for the same surface rms slope scattering loss due to angular filtering near the critical angle of a total internal reflection (TIR) glass-to-air interface.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金Project supported by the National Basic Research Program of China(Grant No.2013CBA01702)the National Natural Science Foundation of China(Grant Nos.11474206,91233202,11374216,and 11404224)+1 种基金the Scientific Research Project of Beijing Education Commission,China(Grant No.KM201310028005)the Scientific Research Base Development Program of the Beijing Municipal Commission of Education and the Beijing Youth Top-Notch Talent Training Plan,China(Grant No.CIT&TCD201504080)
文摘Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems.
基金Project supported by the National Natural Science Foundation(NSF) of China (Nos. 90101024 and 60378037) and the NationalBasic Research Program (973) of China (No. 2004CB719805)
文摘The theoretical mechanism for realizing a negative refractive index material in an optical frequency range with an atomic gas system of electromagnetically induced transparency (EIT) is studied. It is shown that under certain conditions such a dense gas can exhibit simultaneously negative permittivity and negative permeability, and negligibly small loss.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301801)the National Natural Science Foundation of China (GrantNos. 91233202,10904099,11204188,61205097,and 11174211)
文摘In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.91233202,21173260,and 51072221)the National Basic Research Program of China(Grant No.2012CB932903)
文摘Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells.
文摘Objective: To compare refractive outcomes using the Lenstar optical low-coherence reflectometry (OLCR) biometer in the following cases: phacovitrectomy for epiretinal membranes and macular holes (phacovitrectomy group);sequential cataract surgery after prior vitrectomy (sequential-phaco group);routine cataract surgery (phaco-only group). Methods: This study was a retrospective, consecutive comparative series. Main outcomes were mean prediction error (ME) and mean absolute prediction error (MAE). Secondary out-come was the variance in prediction error. Results: ME was significantly more myopic in the phacovitrectomy group (-0.08 ± 0.77D, mean ± SD, p = 0.04) and the sequentialphaco group (-0.09 ± 0.51D, p = 0.01) compared to the phaco-only group (+0.24 ± 0.53D). MAEs were not statistically different across the 3 groups. The phacovitrectomy group had a wider variance in prediction errors compared to the phaco-only group (p = 0.03). Conclusions: There is a myopic shift of approximately -0.3D in both phacovitrectomy and sequential-phaco cases compared to phaco-only cases when using OLCR-based optical biometry. Phacovitrectomy outcomes are more variable compared to phaco-only eyes.
基金supported by the National Natural Science Foundation of China(Nos.61875086,61377086)Aerospace Science Foundation of China(No.2016ZD52042)Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20170801)。
文摘GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.
基金Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0301300the National Natural Science Foundation of China under Grant Nos 11374041 and 11574035the State Key Laboratory of Information Photonics and Optical Communications
文摘A symmetric plasmonie structure consisting of metal-insulator metal waveguide, groove studied, which supports double Fano resonances deriving from two different mechanisms and slot cavities is One of the Fano resonances originates from the interference between the resonances of groove and slot cavities, and the other comes from the interference between slot cavities. The spectral line shapes and the peaks of the double Fano resonances can be modulated by changing the length of the slot cavities and the height of the groove. Furthermore, the wavelength of the resonance peak has a linear relationship with the length of the slot cavities. The proposed plasmonic nanosensor possesses a sensitivity of 800nm/RIU and a figure of merit of 3150, which may have important applications in switches, sensors, and nonlinear devices.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.91233202,21173260,and 51072221)the National Basic Research Program of China(Grant No.2012CB932903
文摘Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.
基金Supported by the National Key Research and Development Program of China(2017YFB0403200)
文摘Novel transparent ceramics of Zr4+ doped Ba(Mg,Ta)O3(BMT)with a high refractive index of 2.037 at 587.56 nm were successfully fabricated via high temperature solid-state-reaction sintering method.To make it transparent,the pure cubic Ba(Zr,Mg,Ta)O3 phases(BZMT)were realized in advance by skillfully modulating the lattice structure of BMT from trigonal symmetric to cubic symmetric through doping Zr4+ into the lattice of BMT crystal.Highly optical transmittance of 74% at 650 n,,which hit the upper limit of the theory,was achieved for BZMT.Both abbe number of 23.4 and the bandgap Eg of 3.22 eV have been calculated.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271030)
文摘Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been reported previously, however a satisfying theoretical explanation for it is still absent. In this paper, a theoretical model about the temperature dependence of the refractive index of optical fibers is presented and it is in agreement with the previous experimental results. This work is a significant reference for the research and development of temperature sensors based on optical fiber delay lines.
文摘The complex amplitude distribution which can compensate for the spherical aberration caused by mismatch on lnterthce between recording material and immersion material (air) on three-dimensional optical storage system is derived analytically and numerically. Comparison between two approaches is made. It is also shown how the depth of recording layer and position of reference plane are related to the phase distribution at reference plane and how the mismatch can be resolved by using a pure phase element.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91233202,91433205 and 51421002the Chinese Academy of Sciences
文摘A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be di- rectly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12x. Moreover, the designed wavelengths (450nm, 550nm and 65Onto) are spatially distributed on the focal plane, in good agree- ment with the theoretical results. The average optical effic/ency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficieneies.
基金This study was financially supported by the National Natural Science Foundation of China(No.12074324)the Shenzhen Municipal Science and Technology Innovation Council(No.JCJY20180508163404043).
文摘In this article,we present a theoretical study on the sub-bandgap refractive indexes and optical properties of Sidopedβ-Ga_(2)O_(3) thin films based on newly developed models.The measured sub-bandgap refractive indexes ofβ-Ga_(2)O_(3) thin film are explained well with the new model,leading to the determination of an explicit analytical dispersion of refractive indexes for photon energy below an effective optical bandgap energy of 4.952 eV for theβ-Ga_(2)O_(3) thin film.Then,the oscillatory structures in long wavelength regions in experimental transmission spectra of Si-dopedβ-Ga_(2)O_(3) thin films with different Si doping concentrations are quantitively interpreted utilizing the determined sub-bandgap refractive index dispersion.Meanwhile,effective optical bandgap values of Si-dopedβ-Ga_(2)O_(3) thin films are further determined and are found to decrease with increasing the Si doping concentration as expectedly.In addition,the sub-bandgap absorption coefficients of Si-dopedβ-Ga_(2)O_(3) thin film are calculated under the frame of the Franz–Keldysh mechanism due to the electric field effect of ionized Si impurities.The theoretical absorption coefficients agree with the available experimental data.These key parameters obtained in the present study may enrich the present understanding of the sub-bandgap refractive indexes and optical properties of impurity-dopedβ-Ga_(2)O_(3) thin films.
基金Supported by the Deanship of Scientific Research of University of Dammam under Grant No 2015134
文摘In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.
文摘We experimentally detect high-refractive-index media (n > 1.5) using a surface plasmon resonance (SPR) sensor with a diffraction grating. While SPR sensors are generally based on the attenuated total reflection method using metal films, here, we focus on a method using a diffraction grating, which can detect relatively higher refractive-index media and is suitable for device miniaturization. In this study, we used the rigorous coupled-wave analysis method to simulate the dependence of the reflectance on an incident angle for media with refractive index values up to 1.700. In the experiment, a medium (n = 1.660 - 1.700) was successfully detected using this grating. Under the conditions of the grating (period: 600 nm, Au thickness: 40 nm) using a red laser (λ: 635 nm), a sharp decline in the reflectance and a rise in the transmittance at certain angles were confirmed, demonstrating the extraordinary transmission enabled by SPR. Because excitation angles changed with changes in the refractive index, we concluded that this method can be applied to sensors that detect high-refractive-index media.
文摘By use of the Keldysh non-equilibrium Green’s-function methods, the third harmonic susceptibilities of two polyaniline families, PANI-HCl and PANI-H 3PO 4, are calculated [ x (3) ( ω )≈10 -12 esu]. It was found that the third harmonic susceptibility of polyaniline strongly depends on the delocalization of the electrons. The refractive indices n ( λ =589 nm) of PANI-HCl and PANI-H 3PO 4 are calculated by use of three common methods (the Lorentz-Lorentz theoretical model, the Gladstone-Dale group contribution and the Vogel group correlation) based on group contributions to molar refraction. The calculated n values are varied from 1.31 to 1.42 for PANI-HCl and 1.36 to 1.45 for PANI-H 3PO 4.
文摘To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.
文摘In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm can successfully achieve to design DOEs for beam shaping. Compared with conventional algorithm, this algorithm can provide faster convergence, more powerful ability to overcome local minimum problem and better shaping quality. By computer simulation, the result has shown that the DOEs designed by this algorithm has snch advantages as high uniformity at the main lobe, low profile error and steep edge.