Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in...Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.展开更多
The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal...The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.展开更多
基金This research was supported by The Gansu province meteorological bureau and university cooperation project"Numerical Si mulation of the Influences of Tibetan Plateau Vegetation Variability on Regional Cli mate"The science andtechnology bureau of Sichuan province applicationtechnology research and development project"Study of Ecological SystemEvolutionin Sichuan andits Mechanism"(07JY029-036)The opening project of the Cheng-duinstitute of plateau meteorology China meteorological administration"Study of Influence of Tibetan Plateau Vegetation Variability on Regional Cli mate and its Mechanism"(LPM2006020).
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)the National Natural Science Foundation of China(Grant No.41130103)
文摘Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.
基金supported by the National Basic Research Program of China(2012CB955401 and 2009CB421406)the National Natural Science Foundation of China(41175072)
文摘The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.