期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Regenerating gene 4 promotes chemoresistance of colorectal cancer by affecting lipid droplet synthesis and assembly 被引量:1
1
作者 Cong-Yu Zhang Rui Zhang +4 位作者 Li Zhang Zi-Mo Wang Hong-Zhi Sun Zheng-Guo Cui Hua-Chuan Zheng 《World Journal of Gastroenterology》 SCIE CAS 2023年第35期5104-5124,共21页
BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous stud... BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism.AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance.METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC.The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells.We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells.Finally,we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells.RESULTS Compared to normal mucosa,REG4 mRNA expression was high in CRC(P<0.05)but protein expression was low.An inverse correlation existed between lymph node and distant metastases,tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression(P<0.05),but vice versa for REG4 protein expression.REG4-related genes included:Chemokine activity;taste receptors;protein-DNA and DNA packing complexes;nucleosomes and chromatin;generation of second messenger molecules;programmed cell death signals;epigenetic regulation and DNA methylation;transcription repression and activation by DNA binding;insulin signaling pathway;sugar metabolism and transfer;and neurotransmitter receptors(P<0.05).REG4 exposure or overexpression promoted proliferation,antiapoptosis,migration,and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway.REG4 was involved in chemoresistance not through de novo lipogenesis,but lipid droplet assembly.REG4 inhibited the transcription of acetyl-CoA carboxylase 1(ACC1)and ATP-citrate lyase(ACLY)by disassociating the complex formation of anti-acetyl(AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY.CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly.REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation. 展开更多
关键词 Colorectal cancer Regenerating gene 4 Aggressive behavior PROGNOSiS CHEMORESiSTANCE Lipid droplet formation Epidermal growth factor receptor signal
下载PDF
Gene therapy and the regeneration of retinal ganglion cell axons 被引量:2
2
作者 Alan R. Harvey 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期232-233,共2页
Because the adult mammalian central nervous system (CNS) has only limited intrinsic capacity to regenerate connections after injury, due to factors both intrinsic and extrinsic to the mature neuron (Shen et al., 19... Because the adult mammalian central nervous system (CNS) has only limited intrinsic capacity to regenerate connections after injury, due to factors both intrinsic and extrinsic to the mature neuron (Shen et al., 1999; Berry et al., 2008; Lingor et al., 2008; Sun and He, 2010; Moore et al., 2011 ), therapies are required to support the survival of injured neu-rons and to promote the long-distance regrowth of axons back to their original target structures. The retina and optic nerve (ON) are part of the CNS and this system is much used in experiments designed to test new ways of promoting regeneration after injury (Harvey et al., 2006; Benowitz and Yin, 2008; Berry et al., 2008; Fischer and Leibinger, 2012). Testing of therapies designed to improve retinal ganglion cell (RGC) viability also has direct clinical relevance because there is loss of these centrally projecting neurons in many ophthalmic diseases. 展开更多
关键词 RGCS gene gene therapy and the regeneration of retinal ganglion cell axons AAV cell
下载PDF
Role of microRNA in liver regeneration 被引量:1
3
作者 Peng-Sheng Yi Ming Zhang Ming-Qing Xu 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2016年第2期141-146,共6页
BACKGROUND: Liver regeneration is a complex process. micro RNAs(mi RNAs) are short, single-stranded RNAs that modify gene expression at the post-transcriptional level. Recent investigations have revealed that mi RN... BACKGROUND: Liver regeneration is a complex process. micro RNAs(mi RNAs) are short, single-stranded RNAs that modify gene expression at the post-transcriptional level. Recent investigations have revealed that mi RNAs are closely linked to liver regeneration.DATA SOURCES: All included studies were obtained from Pub Med, Embase, the Science Direct databases and Web of Science, with no limitation on publication year. Only studies published in English were considered.RESULTS: We grouped studies that involved mi RNA and liver regeneration into two groups: mi RNAs as promoters and as inhibitors of liver regeneration. We summarized the relevant mi RNAs separately from the related pathways.CONCLUSIONS: Blocking or stimulating the pathways of mi RNAs in liver regeneration may be novel therapeutic strategies in future regeneration-related liver managements. We may discover additional chemotherapy targets of mi RNA. 展开更多
关键词 microRNAs liver regeneration gene expression target pathway
下载PDF
Restoring axonal localization and transport of transmembrane receptors to promote repair within the injured CNS: a critical step in CNS regeneration 被引量:1
4
作者 Lindsey H.Forbes Melissa R.Andrews 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期27-30,共4页
Each neuronal subtype is distinct in how it develops,responds to environmental cues,and whether it is capable of mounting a regenerative response following injury.Although the adult central nervous system(CNS) does ... Each neuronal subtype is distinct in how it develops,responds to environmental cues,and whether it is capable of mounting a regenerative response following injury.Although the adult central nervous system(CNS) does not regenerate,several experimental interventions have been trialled with successful albeit limited instances of axonal repair.We highlight here some of these approaches including extracellular matrix(ECM) modification,cellular grafting,gene therapy-induced replacement of proteins,as well as application of biomaterials.We also review the recent report demonstrating the failure of axonal localization and transport of growth-promoting receptors within certain classes of mature neurons.More specifically,we discuss an inability of integrin receptors to localize within the axonal compartment of mature motor neurons such as in the corticospinal and rubrospinal tracts,whereas in immature neurons of those pathways and in mature sensory tracts such as in the optic nerve and dorsal column pathways these receptors readily localize within axons.Furthermore we assert that this failure of axonal localization contributes to the intrinsic inability of axonal regeneration.We conclude by highlighting the necessity for both combined therapies as well as a targeted approach specific to both age and neuronal subtype will be required to induce substantial CNS repair. 展开更多
关键词 axonal transport cellular therapies extracellular matrix gene therapy integrin regeneration viral vectors
下载PDF
Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects 被引量:9
5
作者 Wei-hui Chen Chuan-qing Mao +1 位作者 Li-li Zhuo Joo L.Ong 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1159-1165,共7页
We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor(β-NGF) on neurogenesis and ... We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor(β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects filled with collagen bone substitute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μgβ-NGF in PBS(β-NGF + PBS) into the right-hand side defect, and PBS into the left(control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on the β-NGF + PBS side than on the control side, and that of neurofilament 160 was greater. On day 14, β III-tubulin and protein gene product 9.5 were greater on the β-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application of β-NGF promoted neurogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-filled defects. 展开更多
关键词 nerve regeneration β-nerve growth factor collagen angiogenesis protein gene product 9.5 vascular endothelial growth factor β iii-tubulin neural regeneration
下载PDF
Transcriptome analysis of adherens junction pathway-related genes after peripheral nerve injury 被引量:3
6
作者 Sheng Yi Xing-Hui Wang Ling-Yan Xing 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1804-1810,共7页
The neural regeneration process is driven by a wide range of molecules and pathways. Adherens junctions are critical cellular junctions for the integrity of peripheral nerves. However, few studies have systematically ... The neural regeneration process is driven by a wide range of molecules and pathways. Adherens junctions are critical cellular junctions for the integrity of peripheral nerves. However, few studies have systematically characterized the transcript changes in the adherens junction pathway following injury. In this study, a rat model of sciatic nerve crush injury was established by forceps. Deep sequencing data were analyzed using comprehensive transcriptome analysis at 0, 1, 4, 7, and 14 days after injury. Results showed that most individual molecules in the adherens junctions were either upregulated or downregulated after nerve injury. The m RNA expression of ARPC1 B, ARPC3, TUBA8, TUBA1 C, CTNNA2, ACTN3, MET, HGF, NME1 and ARF6, which are involved in the adherens junction pathway and in remodeling of adherens junctions, was analyzed using quantitative real-time polymerase chain reaction. Most of these genes were upregulated in the sciatic nerve stump following peripheral nerve injury, except for CTNNA2, which was downregulated. Our findings reveal the dynamic changes of key molecules in adherens junctions and in remodeling of adherens junctions. These key genes provide a reference for the selection of clinical therapeutic targets for peripheral nerve injury. 展开更多
关键词 peripheral nerve regeneration crushed sciatic nerve RNA-SEQ adherens junctions remodeling of adherens junctions Venn diagram ingenuity pathway analysis differentially expressed genes comprehensive transcript analysis transcriptomics heatmap neural regeneration
下载PDF
DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children 被引量:3
7
作者 Yun Chen Hua Zhao +1 位作者 Yi-xin Zhang Peng-xiang Zuo 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期259-266,共8页
Developmental dyslexia is a complex reading and writing disorder with strong genetic components. In previous genetic studies about dyslexia, a number of candidate genes have been identified. These include DCDC2, which... Developmental dyslexia is a complex reading and writing disorder with strong genetic components. In previous genetic studies about dyslexia, a number of candidate genes have been identified. These include DCDC2, which has repeatedly been associated with developmental dyslexia in various European and American populations. However, data regarding this relationship are varied according to population. The Uyghur people of China represent a Eurasian population with an interesting genetic profile. Thus, this group may provide useful information about the association between DCDC2 gene polymorphisms and dyslexia. In the current study, we examined genetic data from 392 Uyghur children aged 8–12 years old from the Xinjiang Uyghur Autonomous Region of China. Participants included 196 children with dyslexia and 196 grade-, age-, and gender-matched controls. DNA was isolated from oral mucosal cell samples and fourteen single nucleotide polymorphisms(rs6456593, rs1419228, rs34647318, rs9467075, rs793862, rs9295619, rs807701, rs807724, rs2274305, rs7765678, rs4599626, rs6922023, rs3765502, and rs1087266) in DCDC2 were screened via the SNPscan method. We compared SNP frequencies in five models(Codominant, Dominant, Recessive, Heterozygote advantage, and Allele) between the two groups by means of the chi-squared test. A single-locus analysis indicated that, with regard to the allele frequency of these polymorphisms, three SNPs(rs807724, rs2274305, and rs4599626) were associated with dyslexia. rs9467075 and rs2274305 displayed significant associations with developmental dyslexia under the dominant model. rs6456593 and rs6922023 were significantly associated with developmental dyslexia under the dominant model and in the heterozygous genotype. Additionally, we discovered that the T-G-C-T of the four-marker haplotype(rs9295619-rs807701-rs807724-rs2274305) and the T-A of the two-marker haplotype(rs3765502-1087266) were significantly different between cases and controls. Thus, we conclude that DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children. 展开更多
关键词 nerve regeneration developmental dyslexia single nucleotide polymorphisms Xinjiang Uyghur Autonomous Region elementary school students genetics reading disability gene polymorphisms etiology case-control study neural regeneration
下载PDF
Treatment with analgesics after mouse sciatic nerve injury does not alter expression of wound healingassociated genes
8
作者 Matt C.Danzi Dario Motti +2 位作者 Donna L.Avison John L.Bixby Vance P.Lemmon 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期144-149,共6页
Animal models of sciatic nerve injury are commonly used to study neuropathic pain as well as axon regeneration. Administration of post-surgical analgesics is an important consideration for animal welfare, but the acti... Animal models of sciatic nerve injury are commonly used to study neuropathic pain as well as axon regeneration. Administration of post-surgical analgesics is an important consideration for animal welfare, but the actions of the analgesic must not interfere with the scientific goals of the experiment. In this study, we show that treatment with either buprenorphine or acetaminophen following a bilateral sciatic nerve crush surgery does not alter the expression in dorsal root ganglion(DRG) sensory neurons of a panel of genes associated with wound healing. These findings indicate that the post-operative use of buprenorphine or acetaminophen at doses commonly suggested by Institutional Animal Care and Use Committees does not change the intrinsic gene expression response of DRG neurons to a sciatic nerve crush injury, for many wound healing-associated genes. Therefore, administration of post-operative analgesics may not confound the results of transcriptomic studies employing this injury model. 展开更多
关键词 acetaminophen analgesics axon buprenorphine dorsal root ganglia gene expression peripheral nerve injuries regeneration sciatic nerve wound healing
下载PDF
Protection of 3'-methoxy-puerarin against focal brain ischemia and its association with c-fos expression 被引量:2
9
作者 Sha Liu Yibing Zhang +3 位作者 Guiyou Du Yong Zhao Haifeng Cui Chunyu Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第27期2094-2099,共6页
The present study established a rat model of focal brain ischemia by occlusion of the middle cerebral artery covered with FeCl3, and investigated the protective effect of 3'-methoxy-puerarin. Hippocampal and cortical... The present study established a rat model of focal brain ischemia by occlusion of the middle cerebral artery covered with FeCl3, and investigated the protective effect of 3'-methoxy-puerarin. Hippocampal and cortical c-fos gene expression was determined using in situ hybridization. Results showed that 3'-methoxy-puerarin reduced neurological deficit scores, cerebral infarcted zone and water content of brain tissues, dramatically increased the activity of catalase and glutathione peroxidase in the ischemia zone of the hippocampus, increased the activity of catalase in the cortex, decreased lipid peroxide and lactic acid contents in the hippocampus and cerebral cortex, and down-regulated c-fos gene expression in brain ischemic rats. Results demonstrated that 3'-methoxy-puerarin exhibited cerebroprotective effects against focal brain ischemia, which involved c-fos gene expression. 展开更多
关键词 focal brain ischemia 3'-methoxy-puerarin puerarin c-fos gene protect neural regeneration
下载PDF
Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a 被引量:5
10
作者 Wang-sheng Duanmu Liu Cao +3 位作者 Jing-yu Chen Hong-fei Ge Rong Hu Hua Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期641-645,共5页
Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain isch... Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method.After 2 hours of ischemia,the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds.This procedure was repeated six times.Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia,and up-regulate acid-sensing ion channel 2a expression at the m RNA and protein level.These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia,which promotes neuronal tolerance to ischemic brain injury. 展开更多
关键词 neural regeneration brain injury ischemic brain injury acid-sensing ion channels neuroprotection ischemic postconditioning neuroprotection protein expression neuronal density ischemic tolerance molecular mechanism gene expression nerve regeneration
下载PDF
The involvement of interleukin-22 in the expression of pancreatic beta cell regenerative Reg genes 被引量:2
11
作者 Thomas Hill Olga Krougly +5 位作者 Enayat Nikoopour Stacey Bellemore Edwin Lee-Chan Lynette A Fouser David J Hill Bhagirath Singh 《Cell Regeneration》 2013年第1期7-17,共11页
Background:In Type 1 diabetes,the insulin-producingβ-cells within the pancreatic islets of Langerhans are destroyed.We showed previously that immunotherapy with Bacillus Calmette-Guerin(BCG)or complete Freund’s adju... Background:In Type 1 diabetes,the insulin-producingβ-cells within the pancreatic islets of Langerhans are destroyed.We showed previously that immunotherapy with Bacillus Calmette-Guerin(BCG)or complete Freund’s adjuvant(CFA)of non-obese diabetic(NOD)mice can prevent disease process and pancreaticβ-cell loss.This was associated with increased islet Regenerating(Reg)genes expression,and elevated IL-22-producing Th17 T-cells in the pancreas.Results:We hypothesized that IL-22 was responsible for the increased Reg gene expression in the pancreas.We therefore quantified the Reg1,Reg2,and Reg3δ(INGAP)mRNA expression in isolated pre-diabetic NOD islets treated with IL-22.We measured IL-22,and IL-22 receptor(R)-αmRNA expression in the pancreas and spleen of pre-diabetic and diabetic NOD mice.Our results showed:1)Reg1 and Reg2 mRNA abundance to be significantly increased in IL-22-treated islets in vitro;2)IL-22 mRNA expression in the pre-diabetic mouse pancreas increased with time following CFA treatment;3)a reduced expression of IL-22Rαfollowing CFA treatment;4)a down-regulation in Reg1 and Reg2 mRNA expression in the pancreas of pre-diabetic mice injected with an IL-22 neutralizing antibody;and 5)an increased isletβ-cell DNA synthesis in vitro in the presence of IL-22.Conclusions:We conclude that IL-22 may contribute to the regeneration ofβ-cells by up-regulating Regenerating Reg1 and Reg2 genes in the islets. 展开更多
关键词 Adjuvant immunotherapy iNTERLEUKiN-22 Regenerating(Reg)genes Beta-cell regeneration Type 1 diabetes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部