Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an...Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.展开更多
In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the c...In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.展开更多
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a...Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.展开更多
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ...FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons.展开更多
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ...Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
The special subject 'research on life prediction technology of important in-service pressure' mainly analyzes the failure mechanism of large-sized important and criticalin-service pressure vessels under the ac...The special subject 'research on life prediction technology of important in-service pressure' mainly analyzes the failure mechanism of large-sized important and criticalin-service pressure vessels under the action of working medium and investigates safety assessmentand life prediction technology with a view to enhance the operation reliability of in-servicepressure vessels in China. Based on a series of accident investigation and test & measuringresearch, the cause of cracking of catalytic regenerator is analyzed and the in-line non-destructiveexamination method and failure prevention measures for the cracking of catalytic regenerator areproposed.展开更多
A parameter perturbation for the unsteady-state heat-transfer characteristics of honeycomb regenerator is presented. It is limited to the cases where the storage matrix has a small wall thickness so that no temperatur...A parameter perturbation for the unsteady-state heat-transfer characteristics of honeycomb regenerator is presented. It is limited to the cases where the storage matrix has a small wall thickness so that no temperature variation in the matrix perpendicular to the flow direction is considered. Starting from a two-phase transient thermal model for the gas and storage matrix, an approximate solution for regenerator heat transfer process is derived using the multiple-scale method for the limiting case where the longitudinal heat conduction of solid matrix is far less than the convective heat transfer between the gas and the solid. The regenerator temperature profiles are expressed as Taylor series of the coefficient of solid heat conduction item in the model. The analytical validity is shown by comparing the perturbation solution with the experiment and the numerical solution. The results show that it is possible for the perturbation to improve the effectiveness and economics of thermal research on regenerators.展开更多
A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiment...A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove.展开更多
An active thermo-acoustic network model of regenerator which is a key component to accomplish the con-version between thermal-and acoustic power in thermo-acoustic system has been established in this paper. The experi...An active thermo-acoustic network model of regenerator which is a key component to accomplish the con-version between thermal-and acoustic power in thermo-acoustic system has been established in this paper. The experiment was carried out to quantify the network. A method called least square is employed in order to identify the H matrix describing the system. The results obtained here show that the active thermo-acoustic network can reliably depict the characteristics of a thermo-acoustic system.展开更多
In mammalian species, including humans, spinal cord in- jury (SCI) leads to permanent disability. A major cause of disability after SCI is the failure of axotomized descending axons to regenerate across the trauma z...In mammalian species, including humans, spinal cord in- jury (SCI) leads to permanent disability. A major cause of disability after SCI is the failure of axotomized descending axons to regenerate across the trauma zone and to reconnect to they appropriate targets distal to the site of injury. Cur- renfly, major research efforts are devoted to find new ways of promoting the regrowth of damaged descending axons. However, activation of axonal regrowth will depend on the survival of the axotomized descending brain neurons.展开更多
This paper presents a practical three dimensional mathematical model of circulation and heat transfer in generator of glass melting furnaces. The model was based on the heat transfer between the smoke flow and the la...This paper presents a practical three dimensional mathematical model of circulation and heat transfer in generator of glass melting furnaces. The model was based on the heat transfer between the smoke flow and the lattice units, and between the air flow and the lattice units. This model not only bypassed the difficulty of complicated computation of the heat transfer process in the regenerator of glass furnaces, but also avoided the irrationality of fixing the temperature distribution on the surfaces. Use of the model yielded very important data and also the method for the design of the regenerator of glass furnaces in practical production.展开更多
A new method was proposed to directly measure the effective resistance and distinguish the porous frequency in the regenerator of the microminiature thermoacoustic refrigerator. Measured results were compared with the...A new method was proposed to directly measure the effective resistance and distinguish the porous frequency in the regenerator of the microminiature thermoacoustic refrigerator. Measured results were compared with the flux gain factor and transmission loss of the real system. The results show that the agreement between the range of the porous frequency and frequency of the system is good, the method can be used to predict the porous frequency of the regenerator in production.展开更多
During long-term use,the clay checker bricks for regenerators of coke ovens on gas side react with the impurities containing Fe and K20,causing foaming,softening and deformation,which is not only related with the impu...During long-term use,the clay checker bricks for regenerators of coke ovens on gas side react with the impurities containing Fe and K20,causing foaming,softening and deformation,which is not only related with the impurity content and properties of the clay checker bricks,but also related with the type and the composition of the dust in the gas.After long term use,the clay checker bricks of coke ovens on air side have relative lower impurities containing Fe and K20.The inferior clay checker bricks,with high impurity content and high porosity,are easy to pulverize and deteriorate due to the oxidationreduction reaction with the iron oxide and the gas.The gas quality shall be concerned for long service life of the coke oven regenerators.展开更多
Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-sh...Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-shift keying signals. The key regeneration mechanism is theoretically analysed. The effectiveness of semiconductor optical amplifier based regenerator is demonstrated by comparing the bit error rate and eye diagrams before and after regeneration for 40-Cbit/s differential phase-shift keying 1080-km transmission systems. The results show that regeneration effects are very well. Bit error rate is tess than 10-12 with the regenerator.展开更多
In order to control the heat saturation time, the temperature field of the regenerators of high temperature air combustion (HTAC) technology after reheating furnace was studied. A one-dimensional unsteady mathematic...In order to control the heat saturation time, the temperature field of the regenerators of high temperature air combustion (HTAC) technology after reheating furnace was studied. A one-dimensional unsteady mathematical model was established and discretized through finite difference method. The relationship between the heat saturation time and some factors was determined through the calculation of a program developed by language C. The heat saturation time decreases with the increase of heat convection coefficient, however, the increase of heat capacity, density and radius of regenerator all increase the heat saturation time approximately linearly.展开更多
Real time phase regeneration is necessary for degraded phase modulation format optical communication systems. A regenerator based on the discrimitive gain effect of a semiconductor optical amplifier was proposed in re...Real time phase regeneration is necessary for degraded phase modulation format optical communication systems. A regenerator based on the discrimitive gain effect of a semiconductor optical amplifier was proposed in recent years. In this paper, for this type of regenerator, its optimal working condition is found by solving the dynamic equations which describe the variance of the optical field and carrier density in the semiconductor optical amplifier by the finite difference method. The results show that the optimal improvement of signal Q factor can reach more than 2.2 dB.展开更多
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea...Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.展开更多
BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data ...BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data on humans are scarce.Additionally,there is limited knowledge about the preoperative factors that influence postoperative regeneration.AIM To quantify postoperative remnant liver volume by the latest volumetric software and investigate perioperative factors that affect posthepatectomy liver regenera-tion.METHODS A total of 268 patients who received partial hepatectomy were enrolled.Patients were grouped into right hepatectomy/trisegmentectomy(RH/Tri),left hepa-tectomy(LH),segmentectomy(Seg),and subsegmentectomy/nonanatomical hepatectomy(Sub/Non)groups.The regeneration index(RI)and late rege-neration rate were defined as(postoperative liver volume)/[total functional liver volume(TFLV)]×100 and(RI at 6-months-RI at 3-months)/RI at 6-months,respectively.The lower 25th percentile of RI and the higher 25th percentile of late regeneration rate in each group were defined as“low regeneration”and“delayed regeneration”.“Restoration to the original size”was defined as regeneration of the liver volume by more than 90%of the TFLV at 12 months postsurgery.RESULTS The numbers of patients in the RH/Tri,LH,Seg,and Sub/Non groups were 41,53,99 and 75,respectively.The RI plateaued at 3 months in the LH,Seg,and Sub/Non groups,whereas the RI increased until 12 months in the RH/Tri group.According to our multivariate analysis,the preoperative albumin-bilirubin(ALBI)score was an independent factor for low regeneration at 3 months[odds ratio(OR)95%CI=2.80(1.17-6.69),P=0.02;per 1.0 up]and 12 months[OR=2.27(1.01-5.09),P=0.04;per 1.0 up].Multivariate analysis revealed that only liver resection percentage[OR=1.03(1.00-1.05),P=0.04]was associated with delayed regeneration.Furthermore,multivariate analysis demonstrated that the preoperative ALBI score[OR=2.63(1.00-1.05),P=0.02;per 1.0 up]and liver resection percentage[OR=1.02(1.00-1.05),P=0.04;per 1.0 up]were found to be independent risk factors associated with volume restoration failure.CONCLUSION Liver regeneration posthepatectomy was determined by the resection percentage and preoperative ALBI score.This knowledge helps surgeons decide the timing and type of rehepatectomy for recurrent cases.展开更多
基金supported by the Research Funds of the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,No.QYZD20220002the National Natural Science Foundation of China,No.82071357a grant from the Ministry of Science and Technology of China,No.2019YFA0405600 (all to BH)。
文摘Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.
基金supported by Ohio State Start Up FundNational Institutes of Health(NIH)+12 种基金Department of Defense(DoD)Wings for Life Spinal Cord Research Foundation,Wings for Life Spinal Cord Research Foundation(Austria)California Institute of Regenerative Medicine(CIRM)International Spinal Research Trust(United Kingdom)Stanford University Bio-X Program Interdisciplinary Initiatives Seed Grant IIP-7Dennis Chan FoundationKlein Family FundLucile Packard Foundation for Children's HealthStanford Institute for Neuro-Innovation and Translational Neurosciences(SINTN)Saunders Family Neuroscience FundJames Doty Neurosurgery FundHearst Neuroscience FundEileen Bond Research Fund(to GP)。
文摘In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
基金supported by the German Research Foundation(DA 2255/1-1to SCD)+4 种基金a SickKids Research Training Competition(RESTRACOMP)Graduate Scholarship(to KJWS)an Ontario Graduate Scholarship(to KJWS)a grant from Natural Sciences and Engineering Research Council of Canada(NSERC)(to KJWS)a Kickstarter grant from the Institute of Biomedical Engineering(BME)at the University of Toronto(to KJWS)the Abe Frank Fund from the Riley’s Children Foundation(GHB)。
文摘Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.
基金supported by the National Natural Science Foundation of China,No.81971177(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)the Peking University People's Hospital Research and Development Fund,No.RDX2021-01(to YK)。
文摘FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons.
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金supported by the Lorenz B?hler Fonds,#2/19 (obtained by the Neuroregeneration Group,Ludwig Boltzmann Institute for Traumatology)the City of Vienna project ImmunTissue,MA23#30-11 (obtained by the Department Life Science Engineering,University of Applied Sciences Technikum Wien)。
文摘Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
基金important scientech problemtackling subject foundation under the state 9th 5-year plan(no.96-918-02-04).
文摘The special subject 'research on life prediction technology of important in-service pressure' mainly analyzes the failure mechanism of large-sized important and criticalin-service pressure vessels under the action of working medium and investigates safety assessmentand life prediction technology with a view to enhance the operation reliability of in-servicepressure vessels in China. Based on a series of accident investigation and test & measuringresearch, the cause of cracking of catalytic regenerator is analyzed and the in-line non-destructiveexamination method and failure prevention measures for the cracking of catalytic regenerator areproposed.
基金Item Sponsored by High Technology Research Development Program of China(2005AA001020,2001AA514013)
文摘A parameter perturbation for the unsteady-state heat-transfer characteristics of honeycomb regenerator is presented. It is limited to the cases where the storage matrix has a small wall thickness so that no temperature variation in the matrix perpendicular to the flow direction is considered. Starting from a two-phase transient thermal model for the gas and storage matrix, an approximate solution for regenerator heat transfer process is derived using the multiple-scale method for the limiting case where the longitudinal heat conduction of solid matrix is far less than the convective heat transfer between the gas and the solid. The regenerator temperature profiles are expressed as Taylor series of the coefficient of solid heat conduction item in the model. The analytical validity is shown by comparing the perturbation solution with the experiment and the numerical solution. The results show that it is possible for the perturbation to improve the effectiveness and economics of thermal research on regenerators.
文摘A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove.
文摘An active thermo-acoustic network model of regenerator which is a key component to accomplish the con-version between thermal-and acoustic power in thermo-acoustic system has been established in this paper. The experiment was carried out to quantify the network. A method called least square is employed in order to identify the H matrix describing the system. The results obtained here show that the active thermo-acoustic network can reliably depict the characteristics of a thermo-acoustic system.
文摘In mammalian species, including humans, spinal cord in- jury (SCI) leads to permanent disability. A major cause of disability after SCI is the failure of axotomized descending axons to regenerate across the trauma zone and to reconnect to they appropriate targets distal to the site of injury. Cur- renfly, major research efforts are devoted to find new ways of promoting the regrowth of damaged descending axons. However, activation of axonal regrowth will depend on the survival of the axotomized descending brain neurons.
文摘This paper presents a practical three dimensional mathematical model of circulation and heat transfer in generator of glass melting furnaces. The model was based on the heat transfer between the smoke flow and the lattice units, and between the air flow and the lattice units. This model not only bypassed the difficulty of complicated computation of the heat transfer process in the regenerator of glass furnaces, but also avoided the irrationality of fixing the temperature distribution on the surfaces. Use of the model yielded very important data and also the method for the design of the regenerator of glass furnaces in practical production.
基金Project supported by the Postdoctoral Science Foundation of Central South University
文摘A new method was proposed to directly measure the effective resistance and distinguish the porous frequency in the regenerator of the microminiature thermoacoustic refrigerator. Measured results were compared with the flux gain factor and transmission loss of the real system. The results show that the agreement between the range of the porous frequency and frequency of the system is good, the method can be used to predict the porous frequency of the regenerator in production.
文摘During long-term use,the clay checker bricks for regenerators of coke ovens on gas side react with the impurities containing Fe and K20,causing foaming,softening and deformation,which is not only related with the impurity content and properties of the clay checker bricks,but also related with the type and the composition of the dust in the gas.After long term use,the clay checker bricks of coke ovens on air side have relative lower impurities containing Fe and K20.The inferior clay checker bricks,with high impurity content and high porosity,are easy to pulverize and deteriorate due to the oxidationreduction reaction with the iron oxide and the gas.The gas quality shall be concerned for long service life of the coke oven regenerators.
基金supported by the Scientific Fund for Chinese Universities (Grant No. BUPT 2009RC0413)the National "863" High Technology Projects (Grant No. 2009AA01Z224)
文摘Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-shift keying signals. The key regeneration mechanism is theoretically analysed. The effectiveness of semiconductor optical amplifier based regenerator is demonstrated by comparing the bit error rate and eye diagrams before and after regeneration for 40-Cbit/s differential phase-shift keying 1080-km transmission systems. The results show that regeneration effects are very well. Bit error rate is tess than 10-12 with the regenerator.
文摘In order to control the heat saturation time, the temperature field of the regenerators of high temperature air combustion (HTAC) technology after reheating furnace was studied. A one-dimensional unsteady mathematical model was established and discretized through finite difference method. The relationship between the heat saturation time and some factors was determined through the calculation of a program developed by language C. The heat saturation time decreases with the increase of heat convection coefficient, however, the increase of heat capacity, density and radius of regenerator all increase the heat saturation time approximately linearly.
基金Project supported by the Scientific Fund for Chinese Universities (Grant No. BUPT 2011RC009)
文摘Real time phase regeneration is necessary for degraded phase modulation format optical communication systems. A regenerator based on the discrimitive gain effect of a semiconductor optical amplifier was proposed in recent years. In this paper, for this type of regenerator, its optimal working condition is found by solving the dynamic equations which describe the variance of the optical field and carrier density in the semiconductor optical amplifier by the finite difference method. The results show that the optimal improvement of signal Q factor can reach more than 2.2 dB.
基金supported by the Natural Science Foundation of Beijing,China(7214223,7212027)the Beijing Hospitals Authority Youth Programme(QML20210601)+3 种基金the Chinese Scholarship Council(CSC)scholarship(201706210415)the National Key Research and Development Program of China(2017YFC0908800)the Beijing Municipal Health Commission(PXM2020_026272_000002,PXM2020_026272_000014)the National Natural Science Foundation of China(82070293).
文摘Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
文摘BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data on humans are scarce.Additionally,there is limited knowledge about the preoperative factors that influence postoperative regeneration.AIM To quantify postoperative remnant liver volume by the latest volumetric software and investigate perioperative factors that affect posthepatectomy liver regenera-tion.METHODS A total of 268 patients who received partial hepatectomy were enrolled.Patients were grouped into right hepatectomy/trisegmentectomy(RH/Tri),left hepa-tectomy(LH),segmentectomy(Seg),and subsegmentectomy/nonanatomical hepatectomy(Sub/Non)groups.The regeneration index(RI)and late rege-neration rate were defined as(postoperative liver volume)/[total functional liver volume(TFLV)]×100 and(RI at 6-months-RI at 3-months)/RI at 6-months,respectively.The lower 25th percentile of RI and the higher 25th percentile of late regeneration rate in each group were defined as“low regeneration”and“delayed regeneration”.“Restoration to the original size”was defined as regeneration of the liver volume by more than 90%of the TFLV at 12 months postsurgery.RESULTS The numbers of patients in the RH/Tri,LH,Seg,and Sub/Non groups were 41,53,99 and 75,respectively.The RI plateaued at 3 months in the LH,Seg,and Sub/Non groups,whereas the RI increased until 12 months in the RH/Tri group.According to our multivariate analysis,the preoperative albumin-bilirubin(ALBI)score was an independent factor for low regeneration at 3 months[odds ratio(OR)95%CI=2.80(1.17-6.69),P=0.02;per 1.0 up]and 12 months[OR=2.27(1.01-5.09),P=0.04;per 1.0 up].Multivariate analysis revealed that only liver resection percentage[OR=1.03(1.00-1.05),P=0.04]was associated with delayed regeneration.Furthermore,multivariate analysis demonstrated that the preoperative ALBI score[OR=2.63(1.00-1.05),P=0.02;per 1.0 up]and liver resection percentage[OR=1.02(1.00-1.05),P=0.04;per 1.0 up]were found to be independent risk factors associated with volume restoration failure.CONCLUSION Liver regeneration posthepatectomy was determined by the resection percentage and preoperative ALBI score.This knowledge helps surgeons decide the timing and type of rehepatectomy for recurrent cases.