Objective Previous studies on the association between lipid profiles and chronic kidney disease(CKD)have yielded inconsistent results and no defined thresholds for blood lipids.Methods A prospective cohort study inclu...Objective Previous studies on the association between lipid profiles and chronic kidney disease(CKD)have yielded inconsistent results and no defined thresholds for blood lipids.Methods A prospective cohort study including 32,351 subjects who completed baseline and follow-up surveys over 5 years was conducted.Restricted cubic splines and Cox models were used to examine the association between the lipid profiles and CKD.A regression discontinuity design was used to determine the cutoff value of lipid profiles that was significantly associated with increased the risk of CKD.Results Over a median follow-up time of 2.2(0.5,4.2)years,648(2.00%)subjects developed CKD.The lipid profiles that were significantly and linearly related to CKD included total cholesterol(TC),triglycerides(TG),high-density lipoprotein cholesterol(HDL-C),TC/HDL-C,and TG/HDL-C,whereas lowdensity lipoprotein cholesterol(LDL-C)and LDL-C/HDL-C were nonlinearly correlated with CKD.TC,TG,TC/HDL-C,and TG/HDL-C showed an upward jump at the cutoff value,increasing the risk of CKD by 0.90%,1.50%,2.30%,and 1.60%,respectively,whereas HDL-C showed a downward jump at the cutoff value,reducing this risk by 1.0%.Female and participants with dyslipidemia had a higher risk of CKD,while the cutoff values for the different characteristics of the population were different.Conclusion There was a significant association between lipid profiles and CKD in a prospective cohort from Northwest China,while TG,TC/HDL-C,and TG/HDL-C showed a stronger risk association.The specific cutoff values of lipid profiles may provide a clinical reference for screening or diagnosing CKD risk.展开更多
Purpose:With the availability of large-scale scholarly datasets,scientists from various domains hope to understand the underlying mechanisms behind science,forming a vibrant area of inquiry in the emerging“science of...Purpose:With the availability of large-scale scholarly datasets,scientists from various domains hope to understand the underlying mechanisms behind science,forming a vibrant area of inquiry in the emerging“science of science”field.As the results from the science of science often has strong policy implications,understanding the causal relationships between variables becomes prominent.However,the most credible quasi-experimental method among all causal inference methods,and a highly valuable tool in the empirical toolkit,Regression Discontinuity Design(RDD)has not been fully exploited in the field of science of science.In this paper,we provide a systematic survey of the RDD method,and its practical applications in the science of science.Design/methodology/approach:First,we introduce the basic assumptions,mathematical notations,and two types of RDD,i.e.,sharp and fuzzy RDD.Second,we use the Web of Science and the Microsoft Academic Graph datasets to study the evolution and citation patterns of RDD papers.Moreover,we provide a systematic survey of the applications of RDD methodologies in various scientific domains,as well as in the science of science.Finally,we demonstrate a case study to estimate the effect of Head Start Funding Proposals on child mortality.Findings:RDD was almost neglected for 30 years after it was first introduced in 1960.Afterward,scientists used mathematical and economic tools to develop the RDD methodology.After 2010,RDD methods showed strong applications in various domains,including medicine,psychology,political science and environmental science.However,we also notice that the RDD method has not been well developed in science of science research.Research Limitations:This work uses a keyword search to obtain RDD papers,which may neglect some related work.Additionally,our work does not aim to develop rigorous mathematical and technical details of RDD but rather focuses on its intuitions and applications.Practical implications:This work proposes how to use the RDD method in science of science research.Originality/value:This work systematically introduces the RDD,and calls for the awareness of using such a method in the field of science of science.展开更多
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two...Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.展开更多
Minerals are now being extracted from deep mines due to drying up of resource in shallow ground. The need for suitable supports and ground control mechanisms for safe mining necessitates proper pillar design with fill...Minerals are now being extracted from deep mines due to drying up of resource in shallow ground. The need for suitable supports and ground control mechanisms for safe mining necessitates proper pillar design with filling technology. In addition, high horizontal stress may cause collapse of hanging wall and footwall rocks, hence designing of suitable crown pillars is absolutely necessary for imposing overall safety of the stopes. This paper provides a methodology for the evaluation of the required thickness of crown pillars for safe operation at depth ranging from 600 m to 1000 m. Analyses are conducted with the results of 108 non-linear numerical models considering Drucker-Prager material model in plane strain condition. Material properties of ore body rock and thickness of crown pillars are varied and safety factors of pillars estimated. Then, a generalized statistical relationship between the safety factors of crown pillars with the various input parameters is developed. The developed multivariate regression model is utilized for generating design/stability charts of pillars for different geo-mining conditions.These design charts can be used for the design of crown pillar thickness with the depth of the working,taking into account the changes of the rock mass conditions in underground metal mine.展开更多
In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups o...In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.展开更多
The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these pa...The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.展开更多
Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) str...Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) strength criterion within the RBD framework, and presents three distinct analyses using a Bayesian approach. Firstly, a compilation of intact compressive strength test data for six rock types is used to examine uncertainty and variability in the estimated H-B parameters m and σc, and corresponding predicted axial strength. The results suggest that within- and between-rock type variabilities are so large that these parameters need to be determined from rock testing campaigns, rather than reference values being used. The second analysis uses an extensive set of compressive and tensile (both direct and indirect) strength data for a granodiorite, together with a new Bayesian regression model, to develop joint probability distributions of m and σc suitable for use in RBD. This analysis also shows how compressive and indirect tensile strength data may be robustly used to fit an H-B criterion. The third analysis uses the granodiorite data to investigate the important matter of developing characteristic strength criteria. Using definitions from Eurocode 7, a formal Bayesian interpretation of characteristic strength is proposed and used to analyse strength data to generate a characteristic criterion. These criteria are presented in terms of characteristic parameters mk and σck, the values of which are shown to depend on the testing regime used to obtain the strength data. The paper confirms that careful use of appropriate Bayesian statistical analysis allows the H-B criterion to be brought within the framework of RBD. It also reveals that testing guidelines such as the International Society for Rock Mechanics and Rock Engineering (ISRM) suggested methods will require modification in order to support RBD. Importantly, the need to fully understand the implications of uncertainty in nonlinear strength criteria is identified.展开更多
The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly ...The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly related to the frequency and distribution of discontinuities in the rock mass and quantified by rock quality designation(RQD).This paper analyzes the data of hydraulic conductivity and discontinuities sampled at different depths during the borehole investigations in the limestone and sandstone formations for the construction of hydraulic structures in Oman.Cores recovered from boreholes provide RQD data,and in situ Lugeon tests elucidate the permeability.A modern technique of multivariate adaptive regression splines(MARS)assisted in correlating permeability and RQD along with the depth.In situ permeability shows a declining trend with increasing RQD,and the depth of investigation is within 50 m.This type of relationship can be developed based on detailed initial investigations at the site where the hydraulic conductivity of discontinuous rocks is required to be delineated.The relationship can approximate the permeability by only measuring the RQD in later investigations on the same site,thus saving the time and cost of the site investigations.The applicability of the relationship developed in this study to another location requires a lithological similarity of the rock mass that can be verified through preliminary investigation at the site.展开更多
This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained u...This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained under suitable conditions. Finally, the author shows that the usual weight functions based on nearest neighbor methods satisfy the designed assumptions imposed.展开更多
The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushi...The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.展开更多
Rational design of high-performance electrocatalysts for hydrogen evolution reaction(HER)is vital for future renewable energy systems.The incorporation of foreign metal ions into catalysts can be an effective approach...Rational design of high-performance electrocatalysts for hydrogen evolution reaction(HER)is vital for future renewable energy systems.The incorporation of foreign metal ions into catalysts can be an effective approach to optimize its performance.However,there is a lack of systematic theoretical studies to reveal the quantitative relationships at the electronic level.Here,we develop a multi-level screening methodology to search for highly stable and active dopants for CoP catalysts.The density functional theory(DFT)calculations and symbolic regression(SR)were performed to investigate the relationship between the adsorption free energy(ΔG_(H^(*)))and 10 electronic parameters.The mathematic formulas derived from SR indicate that the difference of work function(ΔΦ)between doped metal and the acceptor plays the most important role in regulatingΔG_(H^(*)),followed by the d-band center(d-BC)of doped system.The descriptor of HER can be expressed asΔG_(H^(*))=1.59×√|0.188ΔΦ+d BC+0.120|1/2-0.166 with a high determination coefficient(R^(2)=0.807).Consistent with the theoretical prediction,experimental results show that the Al-CoP delivers superior electrocatalytic HER activity with a low overpotential of75 m V to drive a current density of 10 mA cm^(-2),while the overpotentials for undoped CoP,Mo-CoP,and V-CoP are 206,134,and 83 m V,respectively.The current work proves that theΔΦis the most significant regulatory parameter ofΔG_(H^(*))for ion-doped electrocatalysts.This finding can drive the discovery of high-performance ion-doped electrocatalysts,which is crucial for electrocatalytic water splitting.展开更多
This study was concerned on the influence of cooking liquor parameters i.e. active alkali (AA) and sulfidity, on the properties of pulp produced from Thai bamboo by means of multivariate analysis. The investigated p...This study was concerned on the influence of cooking liquor parameters i.e. active alkali (AA) and sulfidity, on the properties of pulp produced from Thai bamboo by means of multivariate analysis. The investigated pulp properties were cooking yield and viscosity. The experiments were performed according to a face centered cube experimental design. Then, multiple linear regression (MLR) of independent and dependent variables were conducted with SPSS software using least square method. In order to optimize process, Pareto-Optimality method was employed. The obtained regression models were characterized by both descriptive and predictive ability (R^2 ≥ 95% and Rcv^2 ≥ 93%) and allowed the kraft pulping process with an acceptable viscosity ( 1110- 1 190 ml/g) and a total yield about 50% at a sulfidity level of 20-30% with 18% AA. Results indicated that high sulfidity at a lower AA could get high viscosity and relatively low kappa number for pulps. Also oxygen delignification was studied in this research.展开更多
Despite the fact that fuzzy regression discontinuity designs are growing in popularity, a lot of research takes into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact. T...Despite the fact that fuzzy regression discontinuity designs are growing in popularity, a lot of research takes into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact. This paper took into account independent and dependent fuzzy factors when creating these designs. Additionally we took into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact, as other research does. The modified Fuzzy Regression Discontinuity model is preferable for modeling fuzzy data. It enables us to draw improved causal effects accommodating fuzzy variables, not just the fuzziness of the treatment effect as in Fuzzy Regression Discontinuity models. A fuzzy dataset is converted into crisp data by the Centroid method of defuzzification. Once the data is crisp, the traditional least squares methods of approximation are used to estimate the parameters in the model since these parameters are considered crisp whilst the error terms are fuzzy. The Alcohol Use Disorders Identification Test score(AUDIT score) can be used as a cutoff to initiate treatment in this case and can be used to predict the progression of HIV disease and/or AIDS. Counseling helps to lower the use of alcohol in people living with HIV/AIDS (PLWHA) as a result, improving the participants’ CD4 counts.展开更多
Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into ...Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.展开更多
In this paper, we conduct research on the trend of modern interior design education reform from the perspectives of aesthetics and traditional regression. Professional interior design technology is to adapt to the nee...In this paper, we conduct research on the trend of modern interior design education reform from the perspectives of aesthetics and traditional regression. Professional interior design technology is to adapt to the needs of economic development of practical talents in the central plains, with the spirit of the "seeking truth from facts" , pinpoint the target of profession fostering, established the reasonable personnel training mode, trying to explore suitable for the market need of professional personnel training mode and practical teaching methods, architecture art and design professional teaching system in higher vocational colleges. Interior design professional teaching reform goal, the guiding ideology, clear, clearer thinking pay attention to professional skills and professional quality education, skills, for body, quality as the soul. Our research starts from the basic analysis of aesthetics and traditional regression to propose the novel educational paradigm that is innovative.展开更多
For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the proc...For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.展开更多
基金supported by the Municipal Science and Technology Program of Wuwei City,China(WW2202RPZ037)the Fundamental Research Funds for the Central Universities in China(Grant No.lzujbky-2018-69).
文摘Objective Previous studies on the association between lipid profiles and chronic kidney disease(CKD)have yielded inconsistent results and no defined thresholds for blood lipids.Methods A prospective cohort study including 32,351 subjects who completed baseline and follow-up surveys over 5 years was conducted.Restricted cubic splines and Cox models were used to examine the association between the lipid profiles and CKD.A regression discontinuity design was used to determine the cutoff value of lipid profiles that was significantly associated with increased the risk of CKD.Results Over a median follow-up time of 2.2(0.5,4.2)years,648(2.00%)subjects developed CKD.The lipid profiles that were significantly and linearly related to CKD included total cholesterol(TC),triglycerides(TG),high-density lipoprotein cholesterol(HDL-C),TC/HDL-C,and TG/HDL-C,whereas lowdensity lipoprotein cholesterol(LDL-C)and LDL-C/HDL-C were nonlinearly correlated with CKD.TC,TG,TC/HDL-C,and TG/HDL-C showed an upward jump at the cutoff value,increasing the risk of CKD by 0.90%,1.50%,2.30%,and 1.60%,respectively,whereas HDL-C showed a downward jump at the cutoff value,reducing this risk by 1.0%.Female and participants with dyslipidemia had a higher risk of CKD,while the cutoff values for the different characteristics of the population were different.Conclusion There was a significant association between lipid profiles and CKD in a prospective cohort from Northwest China,while TG,TC/HDL-C,and TG/HDL-C showed a stronger risk association.The specific cutoff values of lipid profiles may provide a clinical reference for screening or diagnosing CKD risk.
基金This work was supported by grants from the National Natural Science Foundation of China under Grant Nos.72004177 and L1924078.
文摘Purpose:With the availability of large-scale scholarly datasets,scientists from various domains hope to understand the underlying mechanisms behind science,forming a vibrant area of inquiry in the emerging“science of science”field.As the results from the science of science often has strong policy implications,understanding the causal relationships between variables becomes prominent.However,the most credible quasi-experimental method among all causal inference methods,and a highly valuable tool in the empirical toolkit,Regression Discontinuity Design(RDD)has not been fully exploited in the field of science of science.In this paper,we provide a systematic survey of the RDD method,and its practical applications in the science of science.Design/methodology/approach:First,we introduce the basic assumptions,mathematical notations,and two types of RDD,i.e.,sharp and fuzzy RDD.Second,we use the Web of Science and the Microsoft Academic Graph datasets to study the evolution and citation patterns of RDD papers.Moreover,we provide a systematic survey of the applications of RDD methodologies in various scientific domains,as well as in the science of science.Finally,we demonstrate a case study to estimate the effect of Head Start Funding Proposals on child mortality.Findings:RDD was almost neglected for 30 years after it was first introduced in 1960.Afterward,scientists used mathematical and economic tools to develop the RDD methodology.After 2010,RDD methods showed strong applications in various domains,including medicine,psychology,political science and environmental science.However,we also notice that the RDD method has not been well developed in science of science research.Research Limitations:This work uses a keyword search to obtain RDD papers,which may neglect some related work.Additionally,our work does not aim to develop rigorous mathematical and technical details of RDD but rather focuses on its intuitions and applications.Practical implications:This work proposes how to use the RDD method in science of science research.Originality/value:This work systematically introduces the RDD,and calls for the awareness of using such a method in the field of science of science.
基金the support of the Monash-IITB Academy Scholarshipthe Australian Research Council for funding the present research (DP190103592)。
文摘Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.
文摘Minerals are now being extracted from deep mines due to drying up of resource in shallow ground. The need for suitable supports and ground control mechanisms for safe mining necessitates proper pillar design with filling technology. In addition, high horizontal stress may cause collapse of hanging wall and footwall rocks, hence designing of suitable crown pillars is absolutely necessary for imposing overall safety of the stopes. This paper provides a methodology for the evaluation of the required thickness of crown pillars for safe operation at depth ranging from 600 m to 1000 m. Analyses are conducted with the results of 108 non-linear numerical models considering Drucker-Prager material model in plane strain condition. Material properties of ore body rock and thickness of crown pillars are varied and safety factors of pillars estimated. Then, a generalized statistical relationship between the safety factors of crown pillars with the various input parameters is developed. The developed multivariate regression model is utilized for generating design/stability charts of pillars for different geo-mining conditions.These design charts can be used for the design of crown pillar thickness with the depth of the working,taking into account the changes of the rock mass conditions in underground metal mine.
基金Project(50304010) supported by the National Natural Science Foundation of China
文摘In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.
基金supported by Important National Science & Technology Specific Projects of China (No.2) (Nos.2009ZX02001,2011ZX02403)
文摘The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.
文摘Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) strength criterion within the RBD framework, and presents three distinct analyses using a Bayesian approach. Firstly, a compilation of intact compressive strength test data for six rock types is used to examine uncertainty and variability in the estimated H-B parameters m and σc, and corresponding predicted axial strength. The results suggest that within- and between-rock type variabilities are so large that these parameters need to be determined from rock testing campaigns, rather than reference values being used. The second analysis uses an extensive set of compressive and tensile (both direct and indirect) strength data for a granodiorite, together with a new Bayesian regression model, to develop joint probability distributions of m and σc suitable for use in RBD. This analysis also shows how compressive and indirect tensile strength data may be robustly used to fit an H-B criterion. The third analysis uses the granodiorite data to investigate the important matter of developing characteristic strength criteria. Using definitions from Eurocode 7, a formal Bayesian interpretation of characteristic strength is proposed and used to analyse strength data to generate a characteristic criterion. These criteria are presented in terms of characteristic parameters mk and σck, the values of which are shown to depend on the testing regime used to obtain the strength data. The paper confirms that careful use of appropriate Bayesian statistical analysis allows the H-B criterion to be brought within the framework of RBD. It also reveals that testing guidelines such as the International Society for Rock Mechanics and Rock Engineering (ISRM) suggested methods will require modification in order to support RBD. Importantly, the need to fully understand the implications of uncertainty in nonlinear strength criteria is identified.
基金indebted to the Sohar University and the University of Buraimi, Oman, to support this study
文摘The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly related to the frequency and distribution of discontinuities in the rock mass and quantified by rock quality designation(RQD).This paper analyzes the data of hydraulic conductivity and discontinuities sampled at different depths during the borehole investigations in the limestone and sandstone formations for the construction of hydraulic structures in Oman.Cores recovered from boreholes provide RQD data,and in situ Lugeon tests elucidate the permeability.A modern technique of multivariate adaptive regression splines(MARS)assisted in correlating permeability and RQD along with the depth.In situ permeability shows a declining trend with increasing RQD,and the depth of investigation is within 50 m.This type of relationship can be developed based on detailed initial investigations at the site where the hydraulic conductivity of discontinuous rocks is required to be delineated.The relationship can approximate the permeability by only measuring the RQD in later investigations on the same site,thus saving the time and cost of the site investigations.The applicability of the relationship developed in this study to another location requires a lithological similarity of the rock mass that can be verified through preliminary investigation at the site.
基金This article was supported by the National Natural Science Foundation of China(10571001)the Innovation Group Foundation of Anhui University
文摘This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained under suitable conditions. Finally, the author shows that the usual weight functions based on nearest neighbor methods satisfy the designed assumptions imposed.
文摘The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.
基金Financial support from the National Natural Science Foundation of China(21676216)the Special project of Shaanxi Provincial Education Department(20JC034)+1 种基金GHfund B(202202022563)Hefei Advanced Computing Center。
文摘Rational design of high-performance electrocatalysts for hydrogen evolution reaction(HER)is vital for future renewable energy systems.The incorporation of foreign metal ions into catalysts can be an effective approach to optimize its performance.However,there is a lack of systematic theoretical studies to reveal the quantitative relationships at the electronic level.Here,we develop a multi-level screening methodology to search for highly stable and active dopants for CoP catalysts.The density functional theory(DFT)calculations and symbolic regression(SR)were performed to investigate the relationship between the adsorption free energy(ΔG_(H^(*)))and 10 electronic parameters.The mathematic formulas derived from SR indicate that the difference of work function(ΔΦ)between doped metal and the acceptor plays the most important role in regulatingΔG_(H^(*)),followed by the d-band center(d-BC)of doped system.The descriptor of HER can be expressed asΔG_(H^(*))=1.59×√|0.188ΔΦ+d BC+0.120|1/2-0.166 with a high determination coefficient(R^(2)=0.807).Consistent with the theoretical prediction,experimental results show that the Al-CoP delivers superior electrocatalytic HER activity with a low overpotential of75 m V to drive a current density of 10 mA cm^(-2),while the overpotentials for undoped CoP,Mo-CoP,and V-CoP are 206,134,and 83 m V,respectively.The current work proves that theΔΦis the most significant regulatory parameter ofΔG_(H^(*))for ion-doped electrocatalysts.This finding can drive the discovery of high-performance ion-doped electrocatalysts,which is crucial for electrocatalytic water splitting.
文摘This study was concerned on the influence of cooking liquor parameters i.e. active alkali (AA) and sulfidity, on the properties of pulp produced from Thai bamboo by means of multivariate analysis. The investigated pulp properties were cooking yield and viscosity. The experiments were performed according to a face centered cube experimental design. Then, multiple linear regression (MLR) of independent and dependent variables were conducted with SPSS software using least square method. In order to optimize process, Pareto-Optimality method was employed. The obtained regression models were characterized by both descriptive and predictive ability (R^2 ≥ 95% and Rcv^2 ≥ 93%) and allowed the kraft pulping process with an acceptable viscosity ( 1110- 1 190 ml/g) and a total yield about 50% at a sulfidity level of 20-30% with 18% AA. Results indicated that high sulfidity at a lower AA could get high viscosity and relatively low kappa number for pulps. Also oxygen delignification was studied in this research.
文摘Despite the fact that fuzzy regression discontinuity designs are growing in popularity, a lot of research takes into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact. This paper took into account independent and dependent fuzzy factors when creating these designs. Additionally we took into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact, as other research does. The modified Fuzzy Regression Discontinuity model is preferable for modeling fuzzy data. It enables us to draw improved causal effects accommodating fuzzy variables, not just the fuzziness of the treatment effect as in Fuzzy Regression Discontinuity models. A fuzzy dataset is converted into crisp data by the Centroid method of defuzzification. Once the data is crisp, the traditional least squares methods of approximation are used to estimate the parameters in the model since these parameters are considered crisp whilst the error terms are fuzzy. The Alcohol Use Disorders Identification Test score(AUDIT score) can be used as a cutoff to initiate treatment in this case and can be used to predict the progression of HIV disease and/or AIDS. Counseling helps to lower the use of alcohol in people living with HIV/AIDS (PLWHA) as a result, improving the participants’ CD4 counts.
基金Shanghai Leading Academic Discipline Project,China(No.B602)
文摘Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.
文摘In this paper, we conduct research on the trend of modern interior design education reform from the perspectives of aesthetics and traditional regression. Professional interior design technology is to adapt to the needs of economic development of practical talents in the central plains, with the spirit of the "seeking truth from facts" , pinpoint the target of profession fostering, established the reasonable personnel training mode, trying to explore suitable for the market need of professional personnel training mode and practical teaching methods, architecture art and design professional teaching system in higher vocational colleges. Interior design professional teaching reform goal, the guiding ideology, clear, clearer thinking pay attention to professional skills and professional quality education, skills, for body, quality as the soul. Our research starts from the basic analysis of aesthetics and traditional regression to propose the novel educational paradigm that is innovative.
文摘For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.