The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura...The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.展开更多
Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun...Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense t...A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense that the estimators in a certain class have the same expectation as the mean survival time. The estimators have good properties such as strong consistency (with the rate of O(n^-1/1 (log log n)^1/2)) and asymptotic normality. The application to linear regression is considered and the simulation reports are given.展开更多
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ...In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.展开更多
Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens t...Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens the lifespan of the body’s internal organs.Alcoholics often think of alcohol as an everyday drink and see it as a way to reduce stress in their lives because they cannot see the damage in their bodies and they believe it does not affect their physical health.As their drinking increases,they become dependent on alcohol and it affects their daily lives.Therefore,it is important to recognize the dangers of alcohol abuse and to stop drinking as soon as possible.To assist physicians in the diagnosis of patients with alcoholism,we provide a novel alcohol detection system by extracting image features of wavelet energy entropy from magnetic resonance imaging(MRI)combined with a linear regression classifier.Compared with the latest method,the 10-fold cross-validation experiment showed excellent results,including sensitivity 91.54±1.47%,specificity 93.66±1.34%,Precision 93.45±1.27%,accuracy 92.61±0.81%,F1 score 92.48±0.83%and MCC 85.26±1.62%.展开更多
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica...Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.展开更多
The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test...The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test re-sults prove that the simulation results are correct. The distribution of the temperature field of the chimney foundationwas analyzed. The multivariate linear regression of the hightest tomperature was performed on the inner wall of thechimney foundation by the numerical calculated results. The fitting property of the highest temperature with six influ-ence factors was obtained. A simple method for the calculation of the temperature field of the chimney foundation wasprovided.展开更多
The El Nino-Southern Oscillation(ENSO)has great impacts on the Indian Ocean sea surface temperature(SST).In fact,two major modes of the Indian Ocean SST namely the Indian Ocean Basin(IOB)and the Indian Ocean Dipole(IO...The El Nino-Southern Oscillation(ENSO)has great impacts on the Indian Ocean sea surface temperature(SST).In fact,two major modes of the Indian Ocean SST namely the Indian Ocean Basin(IOB)and the Indian Ocean Dipole(IOD)modes,exerting strong influences on the Indian Ocean rim countries,are both influenced by the ENSO.Based on a combined linear regression method,this study quantifies the ENSO impacts on the IOB and the IOD during ENSO concurrent,developing,and decaying stages.After removing the ENSO impacts,the spring peak of the IOB disappears along with significant decrease in number of events,while the number of events is only slightly reduced and the autumn peak remains for the IOD.By isolating the ENSO impacts during each stage,this study reveals that the leading impacts of ENSO contribute to the IOD development,while the delayed impacts facilitate the IOD phase switch and prompt the IOB development.Besides,the decadal variations of ENSO impacts are various during each stage and over different regions.These imply that merely removing the concurrent ENSO impacts would not be sufficient to investigate intrinsic climate variability of the Indian Ocean,and the present method may be useful to study climate variabilities independent of ENSO.展开更多
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation an...This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.展开更多
One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data. The effect is to be evaluated. Through judging the parame...One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data. The effect is to be evaluated. Through judging the parameters, one-dimensional linear equation established is valid. Regression equation can approximately put the measurements of air velocity transducer into the value of average air velocity. The distribution of air velocity field is simulated using Comsol in the conditions of the same length of roadway, the same air velocity and different sections.展开更多
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p...Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.展开更多
This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s in...This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.展开更多
The purpose of this research was to determine whether the Linear Regression Analysis can be effectively applied to the prioritization of defense-in-depth security tools and procedures to reduce cyber threats during th...The purpose of this research was to determine whether the Linear Regression Analysis can be effectively applied to the prioritization of defense-in-depth security tools and procedures to reduce cyber threats during the Global Corona Virus Pandemic. The way this was determined or methods used in this study consisted of scanning 20 peer reviewed Cybersecurity Articles from prominent Cybersecurity Journals for a list of defense in depth measures (tools and procedures) and the threats that those measures were designed to reduce. The methods further involved using the Likert Scale Model to create an ordinal ranking of the measures and threats. The defense in depth tools and procedures were then compared to see whether the Likert scale and Linear Regression Analysis could be effectively applied to prioritize and combine the measures to reduce pandemic related cyber threats. The results of this research reject the H0 null hypothesis that Linear Regression Analysis does not affect the relationship between the prioritization and combining of defense in depth tools and procedures (independent variables) and pandemic related cyber threats (dependent variables).展开更多
This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domai...This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domain.At the same time,it is guaranteed that the error of the training results between the ciphertext domain and the plaintext domain is in a controllable range.After the training,the ciphertext can be decrypted and restored to the original plaintext training data.展开更多
When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the ...When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances in this context and try to compare them.展开更多
基金supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064)National Science and Technology Major Project (Grant No. 2008ZX05025-003)
文摘The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
文摘Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
基金Supported by the National Natural Science Foundation of China (70171008)
文摘A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense that the estimators in a certain class have the same expectation as the mean survival time. The estimators have good properties such as strong consistency (with the rate of O(n^-1/1 (log log n)^1/2)) and asymptotic normality. The application to linear regression is considered and the simulation reports are given.
基金Supported by the Ministry of Environmental Protection of China(No.2011467037)
文摘In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.
基金This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY17F010003.
文摘Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens the lifespan of the body’s internal organs.Alcoholics often think of alcohol as an everyday drink and see it as a way to reduce stress in their lives because they cannot see the damage in their bodies and they believe it does not affect their physical health.As their drinking increases,they become dependent on alcohol and it affects their daily lives.Therefore,it is important to recognize the dangers of alcohol abuse and to stop drinking as soon as possible.To assist physicians in the diagnosis of patients with alcoholism,we provide a novel alcohol detection system by extracting image features of wavelet energy entropy from magnetic resonance imaging(MRI)combined with a linear regression classifier.Compared with the latest method,the 10-fold cross-validation experiment showed excellent results,including sensitivity 91.54±1.47%,specificity 93.66±1.34%,Precision 93.45±1.27%,accuracy 92.61±0.81%,F1 score 92.48±0.83%and MCC 85.26±1.62%.
基金the China Scholarship Council(CSC)(201903250115)the National Natural Science Foundation of China(31972515)the China Agriculture Research System of MOF and MARA(CARS-09-P31).
文摘Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.
文摘The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test re-sults prove that the simulation results are correct. The distribution of the temperature field of the chimney foundationwas analyzed. The multivariate linear regression of the hightest tomperature was performed on the inner wall of thechimney foundation by the numerical calculated results. The fitting property of the highest temperature with six influ-ence factors was obtained. A simple method for the calculation of the temperature field of the chimney foundation wasprovided.
基金The National Natural Science Foundation of China under contract Nos 41830538 and 42090042the Program of the Chinese Academy of Sciences under contract Nos 133244KYSB20190031,ZDRW-XH-2001902 and ISEE2018PY06the Program of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract Nos GML2019ZD0303 and2019BT02H594。
文摘The El Nino-Southern Oscillation(ENSO)has great impacts on the Indian Ocean sea surface temperature(SST).In fact,two major modes of the Indian Ocean SST namely the Indian Ocean Basin(IOB)and the Indian Ocean Dipole(IOD)modes,exerting strong influences on the Indian Ocean rim countries,are both influenced by the ENSO.Based on a combined linear regression method,this study quantifies the ENSO impacts on the IOB and the IOD during ENSO concurrent,developing,and decaying stages.After removing the ENSO impacts,the spring peak of the IOB disappears along with significant decrease in number of events,while the number of events is only slightly reduced and the autumn peak remains for the IOD.By isolating the ENSO impacts during each stage,this study reveals that the leading impacts of ENSO contribute to the IOD development,while the delayed impacts facilitate the IOD phase switch and prompt the IOB development.Besides,the decadal variations of ENSO impacts are various during each stage and over different regions.These imply that merely removing the concurrent ENSO impacts would not be sufficient to investigate intrinsic climate variability of the Indian Ocean,and the present method may be useful to study climate variabilities independent of ENSO.
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
基金Research supported By AFOSC, USA, under Contract F49620-85-0008oy NNSFC of China.
文摘This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.
基金Supported by the National Natural Science Foundation of China (51174109)
文摘One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data. The effect is to be evaluated. Through judging the parameters, one-dimensional linear equation established is valid. Regression equation can approximately put the measurements of air velocity transducer into the value of average air velocity. The distribution of air velocity field is simulated using Comsol in the conditions of the same length of roadway, the same air velocity and different sections.
文摘Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.
文摘This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.
文摘The purpose of this research was to determine whether the Linear Regression Analysis can be effectively applied to the prioritization of defense-in-depth security tools and procedures to reduce cyber threats during the Global Corona Virus Pandemic. The way this was determined or methods used in this study consisted of scanning 20 peer reviewed Cybersecurity Articles from prominent Cybersecurity Journals for a list of defense in depth measures (tools and procedures) and the threats that those measures were designed to reduce. The methods further involved using the Likert Scale Model to create an ordinal ranking of the measures and threats. The defense in depth tools and procedures were then compared to see whether the Likert scale and Linear Regression Analysis could be effectively applied to prioritize and combine the measures to reduce pandemic related cyber threats. The results of this research reject the H0 null hypothesis that Linear Regression Analysis does not affect the relationship between the prioritization and combining of defense in depth tools and procedures (independent variables) and pandemic related cyber threats (dependent variables).
文摘This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domain.At the same time,it is guaranteed that the error of the training results between the ciphertext domain and the plaintext domain is in a controllable range.After the training,the ciphertext can be decrypted and restored to the original plaintext training data.
文摘When the population, from which the samples are extracted, is not normally distributed, or if the sample size is particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances in this context and try to compare them.