期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Arithmetic Progressions,Different Regularity Lemmas and Removal Lemmas
1
作者 Endre Szemerédi 《Communications in Mathematics and Statistics》 SCIE 2015年第3期315-328,共14页
This lecture note is mainly about arithmetic progressions,different regularity lemmas and removal lemmas.We will be very brief most of the time,trying to avoid technical details,even definitions.For most technical det... This lecture note is mainly about arithmetic progressions,different regularity lemmas and removal lemmas.We will be very brief most of the time,trying to avoid technical details,even definitions.For most technical details,we refer the reader to references.Apart from arithmetic progressions,we also discuss property testing and extremal graph theory. 展开更多
关键词 Arithmetic progressions regularity lemmas Removal lemmas
原文传递
Multicolored Bipartite Ramsey Numbers of Large Cycles
2
作者 Shao-qiang LIU Yue-jian PENG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第2期347-357,共11页
For an integer r≥2 and bipartite graphs Hi,where 1≤i≤r,the bipartite Ramsey number br(H1,H2,…,Hr)is the minimum integer N such that any r-edge coloring of the complete bipartite graph KN;N contains a monochromatic... For an integer r≥2 and bipartite graphs Hi,where 1≤i≤r,the bipartite Ramsey number br(H1,H2,…,Hr)is the minimum integer N such that any r-edge coloring of the complete bipartite graph KN;N contains a monochromatic subgraph isomorphic to Hi in color i for some 1≤i≤r.We show that if r≥3;α1,α2>0,αj+2≥[(j+2)!-1]Σi=1^(j+1)α1 for j=1,2…r-2,then br(C2[α1n],C2[α2n],…,C2[αrn]=(Σ=j=1^(r)a j+o(1))n. 展开更多
关键词 ramsey number bipartite ramsey number regularity lemma
原文传递
p-arrangeable Graphs are Folkman Linear
3
作者 Xun CHEN Qi-zhong LIN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第1期69-74,共6页
For graphs F and G,let F→(G,G)denote that any red/blue edge coloring of F contains a monochromatic G.Define Folkman number f(G;t)to be the smallest order of a graph F such that F→(G,G)andω(F)≤t.It is shown that f(... For graphs F and G,let F→(G,G)denote that any red/blue edge coloring of F contains a monochromatic G.Define Folkman number f(G;t)to be the smallest order of a graph F such that F→(G,G)andω(F)≤t.It is shown that f(G;t)≤cn for p-arrangeable graphs with n vertices,where p≥1,c=c(p)and t=t(p)are positive constants. 展开更多
关键词 Folkman number Folkman linear Multi-partite regularity lemma
原文传递
Distributing pairs of vertices on Hamiltonian cycles
4
作者 Weihua He Hao Li Qiang Sun 《Science China Mathematics》 SCIE CSCD 2018年第5期955-972,共18页
Let G be a graph of order n with minimum degree δ(G)≥n/2+1. Faudree and Li(2012) conjectured that for any pair of vertices x and y in G and any integer 2≤k≤n/2, there exists a Hamiltonian cycle C such that the dis... Let G be a graph of order n with minimum degree δ(G)≥n/2+1. Faudree and Li(2012) conjectured that for any pair of vertices x and y in G and any integer 2≤k≤n/2, there exists a Hamiltonian cycle C such that the distance between x and y on C is k. In this paper, we prove that this conjecture is true for graphs of sufficiently large order. The main tools of our proof are the regularity lemma of Szemer′edi and the blow-up lemma of Koml′os et al.(1997). 展开更多
关键词 Hamiltonian cycle Faudree-Li conjecture regularity lemma blow-up lemma
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部