Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernaliza...Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernalization response in wheat varieties.In this study,we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties.For this purpose,we determined how major vernalization genes(VRN1,VRN2,and VRN3)respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression.We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties.We found that in winter wheat,but not in spring wheat,VRN1 expression decreases when returned to warm temperature following vernalization.This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3(H3K27me3)and tri-methylation of lysine 4 on histone H3(H3K4me3)at the VRN1 gene.Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes,including those involved in leucine catabolism,cysteine biosynthesis,and flavonoid biosynthesis.These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.展开更多
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ...Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.展开更多
AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in su...AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFF1 and AFF4 regulate gene transcription through elongation and chromatln remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFFI regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFFl-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs.AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFFI and AFF4 regulate gene transcription through elongation and chromatln remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFFI regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFFl-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs.展开更多
The Hedgehog(Hh) signalling pathway plays many important roles in development,homeostasis and tumorigenesis.The critical function of Hh signalling in bone formation has been identified in the past two decades.Here,w...The Hedgehog(Hh) signalling pathway plays many important roles in development,homeostasis and tumorigenesis.The critical function of Hh signalling in bone formation has been identified in the past two decades.Here,we review the evolutionariiy conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development,homeostasis and diseases.In the early stages of embryonic limb development,Sonic Hedgehog(Shh) acts as a major morphogen in patterning the limb buds.Indian Hedgehog(Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium.Hh signalling is also involved intramembrane ossification.Interactions between Hh and Wnt signalling regulate cartilage development,endochondral bone formation and synovial joint formation.Hh also plays an important role in bone homeostasis,and reducing Hh signalling protects against age-related bone loss.Disruption of Hh signalling regulation leads to multiple bone diseases,such as progressive osseous heteroplasia.Therefore,understanding the signalling mechanisms and functions of Hh signalling in bone development,homeostasis and diseases will provide important insights into bone disease prevention,diagnoses and therapeutics.展开更多
Although Pt Ni catalyst possesses good oxygen reduction activity, its poor stability is the main obstacle for the commercialization of proton exchange membrane fuel cells(PEMFCs). In this work, we introduce the acid-r...Although Pt Ni catalyst possesses good oxygen reduction activity, its poor stability is the main obstacle for the commercialization of proton exchange membrane fuel cells(PEMFCs). In this work, we introduce the acid-resistant refractory Mo to enhance the structure stability and modify the electronic structure of Pt in the prepared PtNi catalyst, improving the catalytic activity for oxygen reduction reaction(ORR). In addition, near-surface Pt content in the nanoparticle is also optimized to balance the ORR activity and stability. The electrochemical results show that the alloy formed by Mo and Pt Ni is obviously more stable than the PtNi alloy alone, because the acid-resistant Mo and its oxides effectively prevent the dissolution of Pt. Especially, the Pt3 Ni3 MoN/C exhibits the optimal ORR catalytic performance in O2-saturated 0.1 mol L^(-1) HClO4 aqueous solutions, with mass activity(MA) of 900 m A mg^(-1) Pt at 0.90 V vs. RHE, which is 3.75 times enhancement compared with the commercial Pt/C(240 mA mg^(-1) Pt). After 30 k accelerated durability tests, its MA(690 m A mg^(-1) Pt) is still 2.88 times higher than the pristine Pt/C. This study thus provides a valuable method to design stable ORR catalysts with high efficiency and has great significance for the commercialization of PEMFCs.展开更多
Ghrelin was isolated as an endogenous ligand for the GH secretagogue receptor from the rat stomach. Although physiological effects of ghrelin have been revealed by numerous studies, the regulation of stomach ghrelin r...Ghrelin was isolated as an endogenous ligand for the GH secretagogue receptor from the rat stomach. Although physiological effects of ghrelin have been revealed by numerous studies, the regulation of stomach ghrelin remains obscure, and the factor that directly regulates ghrelin expression and production has not been identified. Here, we show some data regarding the characteristic features of ghrelin cells and the regulation of stomach ghrelin. In the gastrointestinal tract, ghrelin cells were identified as opened- and closed-type cells, and it was found that the number of ghrelin cells decreased from the stomach to the colon. The postnatal change in number of ghrelin cells in the stomach showed a sexually dimorphic pattern, indicating a role of estrogen in the regulation of stomach ghrelin. In vitro studies revealed that estrogen stimulated both ghrelin expression and production and that treatment with formestane, an aromatase (estrogen synthetase) inhibitor, decreased ghrelin expression level. On the other hand, leptin was found to inhibit both basal and estrogen-stimulated ghrelin expression. Moreover, both aromatase mRNA- expressing cells and leptin cells were found to be located close to ghrelin cells in the gastric mucosa. Furthermore, we found an inverse relationship between gastric ghrelin and leptin levels in a fasting state, and we revealed relative changes in expression of gastric ghrelin, estrogen and leptin in the postnatal rats. We propose that gastric estrogen and leptin directly regulate stomach ghrelin and that the balance control through gastric estrogen and leptin contributes to the altered ghrelin expression level in some physiological states.展开更多
Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying m...Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide(H_2O_2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H_2O_2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.展开更多
The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by m...The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by modifed active silica nanoparticles and surfactant BSSB-12.The dispersion stability tests showed that the hydraulic radius of nanofuids was 58.59 nm and the zeta potential was−48.39 mV.The active nanofuids can simultaneously regulate liquid-liquid interface and solid-liquid interface.The nanofuids can reduce the oil/water interfacial tension(IFT)from 23.5 to 6.7 mN/m,and the oil/water/solid contact angle was altered from 42°to 145°.The spontaneous imbibition tests showed that the oil recovery of 0.1 wt%active nanofuids was 20.5%and 8.5%higher than that of 3 wt%NaCl solution and 0.1 wt%BSSB-12 solution.Finally,the efects of nanofuids on dynamic contact angle,dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofuids at solid-liquid and liquid-liquid interface.The oil detaching and transporting are completed by synergistic efect of wettability alteration and interfacial tension reduction.The fndings of this study can help in better understanding of active nanofuids for EOR in ultra-low permeability reservoirs.展开更多
Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland...Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.展开更多
Liver fibrosis is an important health problem that can further progress into cirrhosis or liver cancer,and result in significant morbidity and mortality. Inhibiting proliferation and inducing apoptosis of hepatic stel...Liver fibrosis is an important health problem that can further progress into cirrhosis or liver cancer,and result in significant morbidity and mortality. Inhibiting proliferation and inducing apoptosis of hepatic stellate cells(HSCs) may be the key point to reverse liver fibrosis. At present,anti-fibrosis drugs are rare. Kinetin is a type of plant-derived cytokinin which has been reported to control differentiation and induce apoptosis of human cells. In this study,the HSCs were incubated with different concentrations of kinetin. The proliferation of rat HSCs was measured by MTT assay,cell cycle and apoptosis were analyzed by flow cytometry,and the apoptosis was examined by TUNEL method. The expression of Bcl-2 and Bax proteins was detected by immunocytochemistry staining. It was found that kinetin could markedly inhibit proliferation of HSCs. In a concentration range of 2 to 8 μg/m L,the inhibitory effects of kinetin on proliferation of HSCs were increased with the increased concentration and the extension of time(P〈0.01). Flow cytometry indicated that kinetin could inhibit the DNA synthesis from G0/G1 to S phase in a dose-dependent manner(P〈0.01). The apoptosis rates of the HSCs treated with 8,4 and 2 μg/m L kinetin(25.62%±2.21%,15.31%±1.9% and 6.18%±1.23%,respectively) were increased significantly compared with the control group(3.81%±0.93%)(P〈0.01). All the DNA frequency histogram in kinetin-treated groups showed obvious hypodiploid peak(sub-G1 peak),and with the increase of kinetin concentrations,the apoptosis rate of HSCs also showed a trend of increase. It was also found that kinetin could down-regulate the expression of Bcl-2,and up-regulate the expression of Bax,leading to the decreased ratio of Bcl-2/Bax significantly. The kinetin-induced apoptosis of HSCs was positively correlated with the expression of Bax,and negatively with the expression of Bcl-2. It was concluded that kinetin can inhibit activation and proliferation of HSCs by interrupting the cell cycle at G1/S restriction point and inducing apoptosis of HSCs via reducing the ratio of Bcl-2/Bax.展开更多
Objective This study aimed to develop a type of Ganoderma lucidum(G.lucidum)-probiotic fermentation broth that can effectively improve the intestinal mucosal barrier function of mice with ceftriaxone-induced intestina...Objective This study aimed to develop a type of Ganoderma lucidum(G.lucidum)-probiotic fermentation broth that can effectively improve the intestinal mucosal barrier function of mice with ceftriaxone-induced intestinal dysbiosis.Methods By means of absorbance of optical density(OD)value and phenol-concentrated sulfuric acid measurement of polysaccharide content,the probiotic species can grow on the medium of G.lucidum were screened out,and the concentration of the medium of G.lucidum was determined,and the fermentation broth was prepared for subsequent experiments.Thirty-two SPF grade male BALB/c mice were randomly divided into four groups(eight mice in each group),namely control group(CON),intestinal mucosal barrier damage model group(CS),fermentation broth intervention group(FT)and G.lucidum medium intervention group(GL),respectively.The intestinal dysregulation model was induced by intra-gastric administration of 0.2 mL ceftriaxone sodium(twice a day for seven consecutive days).From day 8,the FT group and GL group were gavage with 0.2 mL fermentation broth and G.lucidum medium,respectively.On day 15,all mice were sacrificed.To draw the weight curve and measure the cecal index;pathological examination of colon tissues with HE staining;serum levels of LPS,IL-10,TNF and IL-6 were detected by ELISA.Flow cytometry was used to analyze the changes of CD3+T cells,CD4+T cells,CD8+T cells and macrophages in spleen.16S rRNA sequencing was performed to detect the intestinal microbiota structure of mice.Results Bacillus subtilis can decompose and utilize G.lucidum fruiting body medium,and the suitable concentration of G.lucidum fruiting body medium is 33.2 mg/mL.The effect of Bacillus subtilis-G.lucidum fermentation broth on the damage of intestinal mucosal barrier caused by ceftriaxone sodium was reduced,the body weight of mice recovered and colon swelling improved,colon histopathological injury was alleviated,inflammatory cell infiltration was alleviated,serum IL-10 increased significantly,LPS、TNF-αand IL-6 decreased significantly compared with model group,and the proportion of T cells and intestinal dysbiosis was improved.Conclusions The experimental results suggest that Bacillus subtilis-G.lucidum fermentation broth can effectively improve the intestinal barrier function damage,immune dysfunction and intestinal dysbiosis caused by antibiotic overdose,and has a certain regulatory effect on intestinal mucosal barrier function.展开更多
Barrier walls effectively store water,regulate underground flows,improve exploitable reserves and prevent saltwater intrusion.The effectiveness of the underground barrier wall depends not only on the hydrogeological s...Barrier walls effectively store water,regulate underground flows,improve exploitable reserves and prevent saltwater intrusion.The effectiveness of the underground barrier wall depends not only on the hydrogeological structure,the technical parameters of the wall but also on the layout scheme of the exploitation well system.The results showed that in natural conditions,the ground water level upstream of the barrier wall rose in the presence of a barrier wall.In wells located downstream of high barrier walls,the water level decreased.The amount of underground current flowing into the sea decreased,the annual average value of the whole region decreased was 316 m3/day and night.In presence of a wall,both the water level and the amount of evaporation increased.The average increase in evaporation volume during the calculation period of ten thousand days with walls was 4.114 m3/d.So in presence of a wall,the amount of water that can be exploited increases by the total amount of evaporation plus the decrease in discharge to the sea and is equal to 4,424 m3/d.In the exploitation condition,if the water level in the presence of wall is kept as low as in the absence of wall,the exploitation flow will increase to about 4,400 m3/day and night.From the calculated water level values when there is a wall and without a wall,we can see that if the exploitation flow in presence of a wall and in the absence of wall is the same,the water level drop at the calculated observation wells upstream of the wall will decrease from 0.21 m to 3.97 m.The condition of effective exploitation of the wall depends on the mining scheme.The exploitation scheme is reasonable,the exploitation flow of the wells does not exceed the allowable flow so as not to cause the drying of the aquifer at the location of the well.The upstream area of the wall reflects quite clearly as the Total dissolved solids content in observation wells upstream of the wall at the end of the calculation time is significantly reduced compared to that without the wall,ranging from 69 mg/L to 5,629 mg/L.In the presence of a wall,the water level of observation wells upstream of the wall is higher than that of without a wall from 0.10 m to 0.74 m.展开更多
Mechanical strain stimulation is one of the important factors to regulate bone metabolism,maintain bone mass and bone structure.In the process of osteoblasts response to the mechanical strain stimulation,the signal tr...Mechanical strain stimulation is one of the important factors to regulate bone metabolism,maintain bone mass and bone structure.In the process of osteoblasts response to the mechanical strain stimulation,the signal transduction pathways were activated by mechanical stimulation Extracellular signal regulated kinase 1/2(ERK1/2)and Nuclear factor kappa B(NF-κB)signal pathways are both important in the process of signal transduction in osteoblasts.They played an important role in differentiation of osteogenic progenitor cells.Therefore in this research we cultured MC3T3-E1 osteoblasts,and established the vitro model of the mechanical strain stimulation,to observe the differentiation of MC3T3-E1 osteoblastic cells and investigate the interac-展开更多
The light demands of seaweeds is an interesting and rather complex phenomenon because they depend not only on the species but also on their different development stages. Even different parts of the same plant sometime...The light demands of seaweeds is an interesting and rather complex phenomenon because they depend not only on the species but also on their different development stages. Even different parts of the same plant sometimes have different light demands. Light control is an important procedure at large scale Lamnaria nursery stations in China. Technicians and scientists have different viewpoints on the best method to regulate light. A culture study on Lamnaria japonica starting from zoospores to several centimeter sporophytes to find the optimal and critical irradiance ranges for juvenile Laminaria at different development stages added more knowledge on this aspect. Experiment results show gametophytes can not tolerate irradiance of more than 150uEm-2s-1 while sporophytes can tolerate more than 519 uEm-2s-1. This big difference starts from the very early stage of 1-to 2-celled sporophytes. The biological basis and mechanism of this phenomenon need further research.展开更多
Forced dissociation of selectin-ligand complex is crucial to such biological processes as leukocyte recruitment,thrombosis formation,as well as tumor metastasis<sup>[</sup>1].Although several assays and te...Forced dissociation of selectin-ligand complex is crucial to such biological processes as leukocyte recruitment,thrombosis formation,as well as tumor metastasis<sup>[</sup>1].Although several assays and techniques,e.g.,dynamic force spectroscopy(DFS),have been applied to probe the complex at single-bond level,the discrepancies in the loading rate dependence of bond rupture force were found in the assays,presumably due to the different pathways in energy landscape and binding kinetics of molecular complexes<sup>[2]</sup>.However,the underlying mechanisms remain unclear.Here an optical trap(OT)assay was used to quantify the bond rupture at r<sub>f</sub>≤20 pN/s展开更多
Biophysical factors can regulate many aspects of cell functions,including proliferation,migration and differentiation.In general,biophysical factors activate a myriad of signaling events;however,whether there is a com...Biophysical factors can regulate many aspects of cell functions,including proliferation,migration and differentiation.In general,biophysical factors activate a myriad of signaling events;however,whether there is a common paradigm for various mechnotransduction processes is not clear.Here we use cell reprogramming as a model to address this issue.Previous studies have shown that biochemical factors can help reprogram somatic cells into pluripotent stem cells,but the role of biophysical factors during this process remains unknown.We show,for the first time,that biophysical cues,in the form of micropatterned surfaces,can replace the effects of small molecule epigenetic modifiers and significantly improve the reprogramming efficiency.展开更多
Sixty cases of infertility due to luteal phase defect were treated with herbs to tonify the kid-ney and regulate the menstrual cycle.After the treatment,the hyperthermal phase score ofbasal body temperature(BBT)was ma...Sixty cases of infertility due to luteal phase defect were treated with herbs to tonify the kid-ney and regulate the menstrual cycle.After the treatment,the hyperthermal phase score ofbasal body temperature(BBT)was markedly increased(P【0.05),the hyperthermal phase7-8 days after ovulation improved(P【0.001),the transitional period of BBT remarkeblyshortened,and the pregnancy rate in 32 uncomplicated cases of luteal phase defect was 56%.The close relationship between luteal phase defect and the kidney deficiency syndrome inTCM was discussed.The key points of the treatment included coordination of yin and yang,regulation of qi and blood,and combination of tonification with reduction.展开更多
Axon branching enables neurons to contact with multiple targets and respond to their microenvironment.Owing to its importance in neuronal network formation,axon branching has been studied extensively during the past d...Axon branching enables neurons to contact with multiple targets and respond to their microenvironment.Owing to its importance in neuronal network formation,axon branching has been studied extensively during the past decades.It is reported that ECM(Extra Cellular Matrix)components such as laminin,collagen,and tenascin regulate the morphology and motility of neuronal growth cones in culture,but the effects of their distribution and the change of density on axon branching are not well understood.We fabricated chemically homogeneous substrate by microcontact printing(μCP)and inhomogeneous substrate with different laminin density展开更多
One of the traditional Chinesehealth-preservation methods,the “keep-fitmassage” is characterized by the manipula-tion of hands and fingers to stimulate cer-tain regions or points in order to improvingblood circulati...One of the traditional Chinesehealth-preservation methods,the “keep-fitmassage” is characterized by the manipula-tion of hands and fingers to stimulate cer-tain regions or points in order to improvingblood circulation so that,using the con-ducting function of channels and collaterals,展开更多
基金supported by Project 2662020ZKPY002 supported by the Fundamental Research Funds for the Central Universities.
文摘Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernalization response in wheat varieties.In this study,we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties.For this purpose,we determined how major vernalization genes(VRN1,VRN2,and VRN3)respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression.We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties.We found that in winter wheat,but not in spring wheat,VRN1 expression decreases when returned to warm temperature following vernalization.This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3(H3K27me3)and tri-methylation of lysine 4 on histone H3(H3K4me3)at the VRN1 gene.Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes,including those involved in leucine catabolism,cysteine biosynthesis,and flavonoid biosynthesis.These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.
基金financially supported by the National Natural Science Foundation of China(22309032)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011737)+1 种基金the Science and Technology Program of Guangzhou(2023A04J1395)the GDAS’Project of Science and Technology Development(2021GDASYL-20210102010)。
文摘Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.
基金supported by grants from the National Natural Science Foundation of China(NSFC,81722014,81571001,81500354,and 81621062)Sichuan Province Science and Technology Innovation Team Program(2017TD0016)State Key Laboratory of Oral Diseases(SKLOD201704)
文摘AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFF1 and AFF4 regulate gene transcription through elongation and chromatln remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFFI regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFFl-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs.AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFFI and AFF4 regulate gene transcription through elongation and chromatln remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFFI regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFFl-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs.
基金supported by an intramural research programme,NHGRI,National Institutes of Health(NIH)the National Science Foundation for Excellent Young Scholars of China(grant no.813220170)+1 种基金the Innovation Team of Sichuan Province(2015TD0011)the China Scholarship Council
文摘The Hedgehog(Hh) signalling pathway plays many important roles in development,homeostasis and tumorigenesis.The critical function of Hh signalling in bone formation has been identified in the past two decades.Here,we review the evolutionariiy conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development,homeostasis and diseases.In the early stages of embryonic limb development,Sonic Hedgehog(Shh) acts as a major morphogen in patterning the limb buds.Indian Hedgehog(Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium.Hh signalling is also involved intramembrane ossification.Interactions between Hh and Wnt signalling regulate cartilage development,endochondral bone formation and synovial joint formation.Hh also plays an important role in bone homeostasis,and reducing Hh signalling protects against age-related bone loss.Disruption of Hh signalling regulation leads to multiple bone diseases,such as progressive osseous heteroplasia.Therefore,understanding the signalling mechanisms and functions of Hh signalling in bone development,homeostasis and diseases will provide important insights into bone disease prevention,diagnoses and therapeutics.
基金supported by the National Natural Science Foundation of China (21872040)the Natural Science Foundation of Guangxi (2016GXNSFCB380002)+1 种基金the Hundred Talents Program of Guangxi Universitiesthe Excellence Scholars and Innovation Team of Guangxi Universities。
文摘Although Pt Ni catalyst possesses good oxygen reduction activity, its poor stability is the main obstacle for the commercialization of proton exchange membrane fuel cells(PEMFCs). In this work, we introduce the acid-resistant refractory Mo to enhance the structure stability and modify the electronic structure of Pt in the prepared PtNi catalyst, improving the catalytic activity for oxygen reduction reaction(ORR). In addition, near-surface Pt content in the nanoparticle is also optimized to balance the ORR activity and stability. The electrochemical results show that the alloy formed by Mo and Pt Ni is obviously more stable than the PtNi alloy alone, because the acid-resistant Mo and its oxides effectively prevent the dissolution of Pt. Especially, the Pt3 Ni3 MoN/C exhibits the optimal ORR catalytic performance in O2-saturated 0.1 mol L^(-1) HClO4 aqueous solutions, with mass activity(MA) of 900 m A mg^(-1) Pt at 0.90 V vs. RHE, which is 3.75 times enhancement compared with the commercial Pt/C(240 mA mg^(-1) Pt). After 30 k accelerated durability tests, its MA(690 m A mg^(-1) Pt) is still 2.88 times higher than the pristine Pt/C. This study thus provides a valuable method to design stable ORR catalysts with high efficiency and has great significance for the commercialization of PEMFCs.
基金Supported by (in part) Grants for research fellowships from the Japan Society for the Promotion of Science for Young Scientists by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO)
文摘Ghrelin was isolated as an endogenous ligand for the GH secretagogue receptor from the rat stomach. Although physiological effects of ghrelin have been revealed by numerous studies, the regulation of stomach ghrelin remains obscure, and the factor that directly regulates ghrelin expression and production has not been identified. Here, we show some data regarding the characteristic features of ghrelin cells and the regulation of stomach ghrelin. In the gastrointestinal tract, ghrelin cells were identified as opened- and closed-type cells, and it was found that the number of ghrelin cells decreased from the stomach to the colon. The postnatal change in number of ghrelin cells in the stomach showed a sexually dimorphic pattern, indicating a role of estrogen in the regulation of stomach ghrelin. In vitro studies revealed that estrogen stimulated both ghrelin expression and production and that treatment with formestane, an aromatase (estrogen synthetase) inhibitor, decreased ghrelin expression level. On the other hand, leptin was found to inhibit both basal and estrogen-stimulated ghrelin expression. Moreover, both aromatase mRNA- expressing cells and leptin cells were found to be located close to ghrelin cells in the gastric mucosa. Furthermore, we found an inverse relationship between gastric ghrelin and leptin levels in a fasting state, and we revealed relative changes in expression of gastric ghrelin, estrogen and leptin in the postnatal rats. We propose that gastric estrogen and leptin directly regulate stomach ghrelin and that the balance control through gastric estrogen and leptin contributes to the altered ghrelin expression level in some physiological states.
文摘Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide(H_2O_2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H_2O_2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.
基金This work was fnancially supported by National Natural Science Foundation of China(52074333,51874337)Taishan Scholar Foundation of Shandong Province(tspd20161004)Fundamental Research Funds for the Central Universities(19CX07001A).
文摘The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by modifed active silica nanoparticles and surfactant BSSB-12.The dispersion stability tests showed that the hydraulic radius of nanofuids was 58.59 nm and the zeta potential was−48.39 mV.The active nanofuids can simultaneously regulate liquid-liquid interface and solid-liquid interface.The nanofuids can reduce the oil/water interfacial tension(IFT)from 23.5 to 6.7 mN/m,and the oil/water/solid contact angle was altered from 42°to 145°.The spontaneous imbibition tests showed that the oil recovery of 0.1 wt%active nanofuids was 20.5%and 8.5%higher than that of 3 wt%NaCl solution and 0.1 wt%BSSB-12 solution.Finally,the efects of nanofuids on dynamic contact angle,dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofuids at solid-liquid and liquid-liquid interface.The oil detaching and transporting are completed by synergistic efect of wettability alteration and interfacial tension reduction.The fndings of this study can help in better understanding of active nanofuids for EOR in ultra-low permeability reservoirs.
文摘Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.
基金supported by a grant from Hubei Natural Science Foundation of China(No.2013CFB135)
文摘Liver fibrosis is an important health problem that can further progress into cirrhosis or liver cancer,and result in significant morbidity and mortality. Inhibiting proliferation and inducing apoptosis of hepatic stellate cells(HSCs) may be the key point to reverse liver fibrosis. At present,anti-fibrosis drugs are rare. Kinetin is a type of plant-derived cytokinin which has been reported to control differentiation and induce apoptosis of human cells. In this study,the HSCs were incubated with different concentrations of kinetin. The proliferation of rat HSCs was measured by MTT assay,cell cycle and apoptosis were analyzed by flow cytometry,and the apoptosis was examined by TUNEL method. The expression of Bcl-2 and Bax proteins was detected by immunocytochemistry staining. It was found that kinetin could markedly inhibit proliferation of HSCs. In a concentration range of 2 to 8 μg/m L,the inhibitory effects of kinetin on proliferation of HSCs were increased with the increased concentration and the extension of time(P〈0.01). Flow cytometry indicated that kinetin could inhibit the DNA synthesis from G0/G1 to S phase in a dose-dependent manner(P〈0.01). The apoptosis rates of the HSCs treated with 8,4 and 2 μg/m L kinetin(25.62%±2.21%,15.31%±1.9% and 6.18%±1.23%,respectively) were increased significantly compared with the control group(3.81%±0.93%)(P〈0.01). All the DNA frequency histogram in kinetin-treated groups showed obvious hypodiploid peak(sub-G1 peak),and with the increase of kinetin concentrations,the apoptosis rate of HSCs also showed a trend of increase. It was also found that kinetin could down-regulate the expression of Bcl-2,and up-regulate the expression of Bax,leading to the decreased ratio of Bcl-2/Bax significantly. The kinetin-induced apoptosis of HSCs was positively correlated with the expression of Bax,and negatively with the expression of Bcl-2. It was concluded that kinetin can inhibit activation and proliferation of HSCs by interrupting the cell cycle at G1/S restriction point and inducing apoptosis of HSCs via reducing the ratio of Bcl-2/Bax.
基金We thank for the funding support from the National Natural Science Foundation of China(No.31900920)the Nutrition and Care of Maternal&Child Research Fund Project of Guangzhou Biostime Institute of Nutrition&Care(No.2019BINCMCF02)the Liaoning Provincial Program for Top Discipline of Basic Medical Sciences,China.
文摘Objective This study aimed to develop a type of Ganoderma lucidum(G.lucidum)-probiotic fermentation broth that can effectively improve the intestinal mucosal barrier function of mice with ceftriaxone-induced intestinal dysbiosis.Methods By means of absorbance of optical density(OD)value and phenol-concentrated sulfuric acid measurement of polysaccharide content,the probiotic species can grow on the medium of G.lucidum were screened out,and the concentration of the medium of G.lucidum was determined,and the fermentation broth was prepared for subsequent experiments.Thirty-two SPF grade male BALB/c mice were randomly divided into four groups(eight mice in each group),namely control group(CON),intestinal mucosal barrier damage model group(CS),fermentation broth intervention group(FT)and G.lucidum medium intervention group(GL),respectively.The intestinal dysregulation model was induced by intra-gastric administration of 0.2 mL ceftriaxone sodium(twice a day for seven consecutive days).From day 8,the FT group and GL group were gavage with 0.2 mL fermentation broth and G.lucidum medium,respectively.On day 15,all mice were sacrificed.To draw the weight curve and measure the cecal index;pathological examination of colon tissues with HE staining;serum levels of LPS,IL-10,TNF and IL-6 were detected by ELISA.Flow cytometry was used to analyze the changes of CD3+T cells,CD4+T cells,CD8+T cells and macrophages in spleen.16S rRNA sequencing was performed to detect the intestinal microbiota structure of mice.Results Bacillus subtilis can decompose and utilize G.lucidum fruiting body medium,and the suitable concentration of G.lucidum fruiting body medium is 33.2 mg/mL.The effect of Bacillus subtilis-G.lucidum fermentation broth on the damage of intestinal mucosal barrier caused by ceftriaxone sodium was reduced,the body weight of mice recovered and colon swelling improved,colon histopathological injury was alleviated,inflammatory cell infiltration was alleviated,serum IL-10 increased significantly,LPS、TNF-αand IL-6 decreased significantly compared with model group,and the proportion of T cells and intestinal dysbiosis was improved.Conclusions The experimental results suggest that Bacillus subtilis-G.lucidum fermentation broth can effectively improve the intestinal barrier function damage,immune dysfunction and intestinal dysbiosis caused by antibiotic overdose,and has a certain regulatory effect on intestinal mucosal barrier function.
文摘Barrier walls effectively store water,regulate underground flows,improve exploitable reserves and prevent saltwater intrusion.The effectiveness of the underground barrier wall depends not only on the hydrogeological structure,the technical parameters of the wall but also on the layout scheme of the exploitation well system.The results showed that in natural conditions,the ground water level upstream of the barrier wall rose in the presence of a barrier wall.In wells located downstream of high barrier walls,the water level decreased.The amount of underground current flowing into the sea decreased,the annual average value of the whole region decreased was 316 m3/day and night.In presence of a wall,both the water level and the amount of evaporation increased.The average increase in evaporation volume during the calculation period of ten thousand days with walls was 4.114 m3/d.So in presence of a wall,the amount of water that can be exploited increases by the total amount of evaporation plus the decrease in discharge to the sea and is equal to 4,424 m3/d.In the exploitation condition,if the water level in the presence of wall is kept as low as in the absence of wall,the exploitation flow will increase to about 4,400 m3/day and night.From the calculated water level values when there is a wall and without a wall,we can see that if the exploitation flow in presence of a wall and in the absence of wall is the same,the water level drop at the calculated observation wells upstream of the wall will decrease from 0.21 m to 3.97 m.The condition of effective exploitation of the wall depends on the mining scheme.The exploitation scheme is reasonable,the exploitation flow of the wells does not exceed the allowable flow so as not to cause the drying of the aquifer at the location of the well.The upstream area of the wall reflects quite clearly as the Total dissolved solids content in observation wells upstream of the wall at the end of the calculation time is significantly reduced compared to that without the wall,ranging from 69 mg/L to 5,629 mg/L.In the presence of a wall,the water level of observation wells upstream of the wall is higher than that of without a wall from 0.10 m to 0.74 m.
文摘Mechanical strain stimulation is one of the important factors to regulate bone metabolism,maintain bone mass and bone structure.In the process of osteoblasts response to the mechanical strain stimulation,the signal transduction pathways were activated by mechanical stimulation Extracellular signal regulated kinase 1/2(ERK1/2)and Nuclear factor kappa B(NF-κB)signal pathways are both important in the process of signal transduction in osteoblasts.They played an important role in differentiation of osteogenic progenitor cells.Therefore in this research we cultured MC3T3-E1 osteoblasts,and established the vitro model of the mechanical strain stimulation,to observe the differentiation of MC3T3-E1 osteoblastic cells and investigate the interac-
文摘The light demands of seaweeds is an interesting and rather complex phenomenon because they depend not only on the species but also on their different development stages. Even different parts of the same plant sometimes have different light demands. Light control is an important procedure at large scale Lamnaria nursery stations in China. Technicians and scientists have different viewpoints on the best method to regulate light. A culture study on Lamnaria japonica starting from zoospores to several centimeter sporophytes to find the optimal and critical irradiance ranges for juvenile Laminaria at different development stages added more knowledge on this aspect. Experiment results show gametophytes can not tolerate irradiance of more than 150uEm-2s-1 while sporophytes can tolerate more than 519 uEm-2s-1. This big difference starts from the very early stage of 1-to 2-celled sporophytes. The biological basis and mechanism of this phenomenon need further research.
基金supported by National Natural Science Foundation of China grants 10902117, 31230027,30730032,and 10332060
文摘Forced dissociation of selectin-ligand complex is crucial to such biological processes as leukocyte recruitment,thrombosis formation,as well as tumor metastasis<sup>[</sup>1].Although several assays and techniques,e.g.,dynamic force spectroscopy(DFS),have been applied to probe the complex at single-bond level,the discrepancies in the loading rate dependence of bond rupture force were found in the assays,presumably due to the different pathways in energy landscape and binding kinetics of molecular complexes<sup>[2]</sup>.However,the underlying mechanisms remain unclear.Here an optical trap(OT)assay was used to quantify the bond rupture at r<sub>f</sub>≤20 pN/s
文摘Biophysical factors can regulate many aspects of cell functions,including proliferation,migration and differentiation.In general,biophysical factors activate a myriad of signaling events;however,whether there is a common paradigm for various mechnotransduction processes is not clear.Here we use cell reprogramming as a model to address this issue.Previous studies have shown that biochemical factors can help reprogram somatic cells into pluripotent stem cells,but the role of biophysical factors during this process remains unknown.We show,for the first time,that biophysical cues,in the form of micropatterned surfaces,can replace the effects of small molecule epigenetic modifiers and significantly improve the reprogramming efficiency.
文摘Sixty cases of infertility due to luteal phase defect were treated with herbs to tonify the kid-ney and regulate the menstrual cycle.After the treatment,the hyperthermal phase score ofbasal body temperature(BBT)was markedly increased(P【0.05),the hyperthermal phase7-8 days after ovulation improved(P【0.001),the transitional period of BBT remarkeblyshortened,and the pregnancy rate in 32 uncomplicated cases of luteal phase defect was 56%.The close relationship between luteal phase defect and the kidney deficiency syndrome inTCM was discussed.The key points of the treatment included coordination of yin and yang,regulation of qi and blood,and combination of tonification with reduction.
基金financial support is provided by the National Science Foundation of China(50902025, 20890020 and 90813032)the Ministry of Science and Technology of China(2009CB93001 and 2007CB714502)the Chinese Academy of Sciences,and the Human Frontier Science Program
文摘Axon branching enables neurons to contact with multiple targets and respond to their microenvironment.Owing to its importance in neuronal network formation,axon branching has been studied extensively during the past decades.It is reported that ECM(Extra Cellular Matrix)components such as laminin,collagen,and tenascin regulate the morphology and motility of neuronal growth cones in culture,but the effects of their distribution and the change of density on axon branching are not well understood.We fabricated chemically homogeneous substrate by microcontact printing(μCP)and inhomogeneous substrate with different laminin density
文摘One of the traditional Chinesehealth-preservation methods,the “keep-fitmassage” is characterized by the manipula-tion of hands and fingers to stimulate cer-tain regions or points in order to improvingblood circulation so that,using the con-ducting function of channels and collaterals,