The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t...The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.展开更多
A new type of pressure regulating valve for agriculture irrigation, which used spring to regulate pressure was studied. Through the spring regulating pres-sure test, it concluded that for the pressure regulating valve...A new type of pressure regulating valve for agriculture irrigation, which used spring to regulate pressure was studied. Through the spring regulating pres-sure test, it concluded that for the pressure regulating valve with same spring mod-el, the outer pressure became smal er than the inlet pressure of the system and with the changes of inlet pressure, the outlet pressure remained almost the same, and that when inlet pressure was constant, the valve with smal er spring diameter had lower outlet pressure, indicating that the pressure regulating effect of the spring was more obvious with smal er diameter.展开更多
Efficient photocatalysis and electrocatalysis in energy conversion have been important strategies to alleviate energy crises and environmental issues.In recent years,with the rapid development of emerging catalysts,si...Efficient photocatalysis and electrocatalysis in energy conversion have been important strategies to alleviate energy crises and environmental issues.In recent years,with the rapid development of emerging catalysts,significant progress has been made in photocatalysis for converting solar energy into chemical energy and electrocatalysis for converting electrical energy into chemical energy.However,their selectivity and efficiency of the products are poor.Rare earth(RE)can achieve atomic level fine regulation of catalysts and play an crucial role in optimizing catalyst performance by their unique electronic and orbital structures.However,there is a lack of systematic review on the atomic interface regulation mechanism of RE and their role in energy conversion processes.Single atom catalysts(SACs)provide clear active sites and 100%atomic utilization,which is conducive to exploring the regulatory mechanisms of RE.Therefore,this review mainly takes atomic level doped RE as an example to review and discuss the atomic interface regulation role of RE elements in energy conversion.Firstly,a brief introduction was given to the synthesis strategies that can effectively exert the atomic interface regulation effect of RE,with a focus on the atomic interface regulation mechanism of RE.Meanwhile,the regulatory mechanisms of RE atoms have been systematically summarized in various energy conversion applications.Finally,the challenges faced by RE in energy conversion,as well as future research directions and prospects,were pointed out.展开更多
In the present paper, the authors review some major effects of acupuncture in the treatment of clinical diseases and sum up some results of experimental researches on the mechanisms of acupuncture. Up to now, clinical...In the present paper, the authors review some major effects of acupuncture in the treatment of clinical diseases and sum up some results of experimental researches on the mechanisms of acupuncture. Up to now, clinical practice and experimental researches demonstrate that acupuncture possesses good analgesic effect, integrative regulation effect on the functional activities of the body and defense-immune-potentiation effect.展开更多
Objective: In order to explore the radioprotective effects of the expression of hematopoietic growth factors regulated by radio-inducible promoter on radiation injury. Methods:The human FL (Flt3 ligand) cDNA and EGFP ...Objective: In order to explore the radioprotective effects of the expression of hematopoietic growth factors regulated by radio-inducible promoter on radiation injury. Methods:The human FL (Flt3 ligand) cDNA and EGFP (enhanced green fluorescent protein) cDNA were linked together with IRES and then inserted into the eukaryotic expression vector pCI-Egr, which was constructed by substituting CMV promoter in pCIneo with the Egr-1 promoter (Egr-EF). The vector was transferred into human bone marrow stromal ...展开更多
Rice with polyembryony characterized bytwin seedlings is a good genetic tool for apomixisresearch.A study on the effect of five plantgrowth regulators(IAA,KT,GA,2,4-D and6-BAP)on rate of twin seedlings in 3 rice varie...Rice with polyembryony characterized bytwin seedlings is a good genetic tool for apomixisresearch.A study on the effect of five plantgrowth regulators(IAA,KT,GA,2,4-D and6-BAP)on rate of twin seedlings in 3 rice varie.ties with polyembryony(Shuang 3,Shuang 13and Lu 52)was conducted.The results showed展开更多
Subject Code:A02With funding support from the National Natural Science Foundation of China,the research group led by Prof.Yuan Junhua(袁军华)and Zhang Rongjing(张榕京)from the University of Science and Technology of C...Subject Code:A02With funding support from the National Natural Science Foundation of China,the research group led by Prof.Yuan Junhua(袁军华)and Zhang Rongjing(张榕京)from the University of Science and Technology of China(USTC)has discovered non-equilibrium effect in the regulation of the bacterial flagellar switch,展开更多
This paper proposes a novel frequency aware robust economic dispatch (FARED) approach to exploit the synergistic capability of accommodating uncertain loads and renewable generation by accounting for both the frequenc...This paper proposes a novel frequency aware robust economic dispatch (FARED) approach to exploit the synergistic capability of accommodating uncertain loads and renewable generation by accounting for both the frequency regulation effect and optimal participation mechanism of secondary regulation reserves for conventional units in response to uncertainties in the robust optimization counterpart of security constrained economic dispatch.The FARED is formulated as a robust optimization problem.In this formulation the allowable frequency deviation and the possible load or renewable generation curtailments are expressed in terms of variable uncertainty sets.The variables in the formulation are described as interval variables and treated in affine form.In order to improve the computational tractability,the dominant constraints which canbe the candidates of tight transmission constraints are determined by complementarity constraints.Then the robust optimization problem is simplified to a bilinear programming problem based on duality theory.Finally,the effectiveness and efficiency of the proposed method are illustrated based on several study cases.展开更多
A traditional herb that is rich in active substances such as flavonoids, polyphenols and alkaloids, Sedum aizoon L . has antioxidant and preventive effects against chronic diseases. Circadian rhythm disorders are ofte...A traditional herb that is rich in active substances such as flavonoids, polyphenols and alkaloids, Sedum aizoon L . has antioxidant and preventive effects against chronic diseases. Circadian rhythm disorders are often accompanied by changes in intestinal flora, and flavonoids that can regulate intestinal flora may be an effective way to prevent and regulate circadian rhythm disorders. In this study, we established a humanized circadian rhythm mouse model to explore the regulatory mechanism of flavonoids from Sedum aizoon L .(FSAL) on circadian rhythm disorders in mice. The results after feeding FSAL for 4 weeks showed that FSAL improved the imbalance of intestinal microbial structure caused by circadian rhythm disorders, thus regulating alanine, aspartate and glutamate metabolism, histidine metabolism and other metabolites and substances related to metabolism. The analysis of liver transcriptome showed that FSAL significantly regulated retinol metabolism, peroxisome proliferator-activated receptors(PPARs) pathway, and hepatitis C pathway in mouse liver. Therefore, this study obtained the conclusion that FSAL can regulate intestinal flora, metabolites and liver genes to improve circadian rhythm disorders and maintain mouse health.展开更多
In this work,a facile and sensitive colorimetric detection method was firstly reported for RNase A activity detection based on target regulated protection effect of chimeric DNA probe on the salt-induced aggregation o...In this work,a facile and sensitive colorimetric detection method was firstly reported for RNase A activity detection based on target regulated protection effect of chimeric DNA probe on the salt-induced aggregation of plasmonic gold nanoparticles.Compared with previous works of RNase A activity detection,this colorimetric assay integrated the advantages of sensitive,low cost,facile operation,rapid response and low biological toxicity.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42027806 and 42041006)。
文摘The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.
文摘A new type of pressure regulating valve for agriculture irrigation, which used spring to regulate pressure was studied. Through the spring regulating pres-sure test, it concluded that for the pressure regulating valve with same spring mod-el, the outer pressure became smal er than the inlet pressure of the system and with the changes of inlet pressure, the outlet pressure remained almost the same, and that when inlet pressure was constant, the valve with smal er spring diameter had lower outlet pressure, indicating that the pressure regulating effect of the spring was more obvious with smal er diameter.
基金support from the National Natural Science Foundation of China(Nos.21875021,22075024)the Beijing Natural Science Foundation(No.2212018).
文摘Efficient photocatalysis and electrocatalysis in energy conversion have been important strategies to alleviate energy crises and environmental issues.In recent years,with the rapid development of emerging catalysts,significant progress has been made in photocatalysis for converting solar energy into chemical energy and electrocatalysis for converting electrical energy into chemical energy.However,their selectivity and efficiency of the products are poor.Rare earth(RE)can achieve atomic level fine regulation of catalysts and play an crucial role in optimizing catalyst performance by their unique electronic and orbital structures.However,there is a lack of systematic review on the atomic interface regulation mechanism of RE and their role in energy conversion processes.Single atom catalysts(SACs)provide clear active sites and 100%atomic utilization,which is conducive to exploring the regulatory mechanisms of RE.Therefore,this review mainly takes atomic level doped RE as an example to review and discuss the atomic interface regulation role of RE elements in energy conversion.Firstly,a brief introduction was given to the synthesis strategies that can effectively exert the atomic interface regulation effect of RE,with a focus on the atomic interface regulation mechanism of RE.Meanwhile,the regulatory mechanisms of RE atoms have been systematically summarized in various energy conversion applications.Finally,the challenges faced by RE in energy conversion,as well as future research directions and prospects,were pointed out.
文摘In the present paper, the authors review some major effects of acupuncture in the treatment of clinical diseases and sum up some results of experimental researches on the mechanisms of acupuncture. Up to now, clinical practice and experimental researches demonstrate that acupuncture possesses good analgesic effect, integrative regulation effect on the functional activities of the body and defense-immune-potentiation effect.
基金National Natural Science Foundation of China(No 39900040)Natiorlal Natural Science Outstanding Youth Foundation of China(No 39825111).
文摘Objective: In order to explore the radioprotective effects of the expression of hematopoietic growth factors regulated by radio-inducible promoter on radiation injury. Methods:The human FL (Flt3 ligand) cDNA and EGFP (enhanced green fluorescent protein) cDNA were linked together with IRES and then inserted into the eukaryotic expression vector pCI-Egr, which was constructed by substituting CMV promoter in pCIneo with the Egr-1 promoter (Egr-EF). The vector was transferred into human bone marrow stromal ...
文摘Rice with polyembryony characterized bytwin seedlings is a good genetic tool for apomixisresearch.A study on the effect of five plantgrowth regulators(IAA,KT,GA,2,4-D and6-BAP)on rate of twin seedlings in 3 rice varie.ties with polyembryony(Shuang 3,Shuang 13and Lu 52)was conducted.The results showed
文摘Subject Code:A02With funding support from the National Natural Science Foundation of China,the research group led by Prof.Yuan Junhua(袁军华)and Zhang Rongjing(张榕京)from the University of Science and Technology of China(USTC)has discovered non-equilibrium effect in the regulation of the bacterial flagellar switch,
基金supported by the National Basic Research Program of China (973 Program) (No.2013CB228205)the National Natural Science Foundation of China (No.51177091, No.51477091)
文摘This paper proposes a novel frequency aware robust economic dispatch (FARED) approach to exploit the synergistic capability of accommodating uncertain loads and renewable generation by accounting for both the frequency regulation effect and optimal participation mechanism of secondary regulation reserves for conventional units in response to uncertainties in the robust optimization counterpart of security constrained economic dispatch.The FARED is formulated as a robust optimization problem.In this formulation the allowable frequency deviation and the possible load or renewable generation curtailments are expressed in terms of variable uncertainty sets.The variables in the formulation are described as interval variables and treated in affine form.In order to improve the computational tractability,the dominant constraints which canbe the candidates of tight transmission constraints are determined by complementarity constraints.Then the robust optimization problem is simplified to a bilinear programming problem based on duality theory.Finally,the effectiveness and efficiency of the proposed method are illustrated based on several study cases.
基金supported by Natural Science Foundation of Zhejiang Province[LY16C200003]Zhejiang Provincial Key Research and Development,Program[2020C02037].
文摘A traditional herb that is rich in active substances such as flavonoids, polyphenols and alkaloids, Sedum aizoon L . has antioxidant and preventive effects against chronic diseases. Circadian rhythm disorders are often accompanied by changes in intestinal flora, and flavonoids that can regulate intestinal flora may be an effective way to prevent and regulate circadian rhythm disorders. In this study, we established a humanized circadian rhythm mouse model to explore the regulatory mechanism of flavonoids from Sedum aizoon L .(FSAL) on circadian rhythm disorders in mice. The results after feeding FSAL for 4 weeks showed that FSAL improved the imbalance of intestinal microbial structure caused by circadian rhythm disorders, thus regulating alanine, aspartate and glutamate metabolism, histidine metabolism and other metabolites and substances related to metabolism. The analysis of liver transcriptome showed that FSAL significantly regulated retinol metabolism, peroxisome proliferator-activated receptors(PPARs) pathway, and hepatitis C pathway in mouse liver. Therefore, this study obtained the conclusion that FSAL can regulate intestinal flora, metabolites and liver genes to improve circadian rhythm disorders and maintain mouse health.
基金supported by the National Natural Science Foundation of China(21625502、21974070)。
文摘In this work,a facile and sensitive colorimetric detection method was firstly reported for RNase A activity detection based on target regulated protection effect of chimeric DNA probe on the salt-induced aggregation of plasmonic gold nanoparticles.Compared with previous works of RNase A activity detection,this colorimetric assay integrated the advantages of sensitive,low cost,facile operation,rapid response and low biological toxicity.