Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer...Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive.It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods:We employed high-throughput sequencing-based high-throughput screening(HTS^(2))to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators.Then,bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results:Utilizing these gene expression signatures,we classified the epigenetic regulators into five distinct clusters,each characterized by specific functions.We discovered functional similarities between BAZ2B and SETMAR,as well as CLOCK and CBX3.Moreover,we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation.Notably,we constructed an epigenetic regulatory network based on the gene expression signatures,which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions:Our work deciphered the extensive regulation among hundreds of epigenetic regulators.The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.展开更多
BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
Anthocyanins play crucial roles in pollen protection and pollinator attraction in flowering plants.However,the mechanisms underlying flower color determination and whether floral anthocyanin regulators participate in ...Anthocyanins play crucial roles in pollen protection and pollinator attraction in flowering plants.However,the mechanisms underlying flower color determination and whether floral anthocyanin regulators participate in other processes remain largely unresolved in soybeans(Glycine max).In this study,we investigated the genetic components and mechanisms governing anthocyanin biosynthesis in soybean flowers.Molecular and genetic studies have characterized two antagonistic regulators,the positive activator GmMYBA3 and the negative repressor GmMYBR1,that modulate the gene expression of anthocyanin biosynthesis in soybean flowers.Further findings revealed a regulatory interplay between GmMYBA3 and GmMYBR1 bridged by GmTT8a,highlighting the complexity of anthocyanin regulation in different soybean organs.Exploration of additional soybean cultivars demonstrated the universality of GmMYBA3 and GmMYBR1 in regulating floral anthocyanin biosynthesis-related genes,with GmF3’5’H identified as a crucial determinant of white flower color.This study provides a molecular mechanism underlying soybean flower color determination,paving the way for the molecular modification of soybean flowers to probably enhance their resistance to abiotic stresses and attractiveness to pollinators.展开更多
The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was...The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was first implemented in the banking sector,to AI governance in an effort to reduce the conflict between regulation and innovation.The AI regulatory sandbox is a new and feasible route for AI governance in China that not only helps to manage the risks of technology application but also prevents inhibiting AI innovation.It keeps inventors'trial-and-error tolerance space inside the regulatory purview while offering a controlled setting for the development and testing of novel AI that hasn't yet been put on the market.By providing full-cycle governance of AI with the principles of agility and inclusive prudence,the regulatory sandbox offers an alternative to the conventional top-down hard regulation,expost regulation,and tight regulation.However,the current system also has inherent limitations and practical obstacles that need to be overcome by a more rational and effective approach.To achieve its positive impact on AI governance,the AI regulatory sandbox system should build and improve the access and exit mechanism,the coordination mechanism between the sandbox and personal information protection,and the mechanisms of exemption,disclosure,and communication.展开更多
Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress o...Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.展开更多
The effects of different treatments on the seedlessness and fruit quality of‘Miguang’table grape was studied by using plant growth regulators,gibberellin acid(GA 3)and forchlorfenuron(CPPU),under different concentra...The effects of different treatments on the seedlessness and fruit quality of‘Miguang’table grape was studied by using plant growth regulators,gibberellin acid(GA 3)and forchlorfenuron(CPPU),under different concentrations and application time.The results showed that the effects of different treatments on the seedlessness and fruit quality were different.Seedless rate,cluster weight,berry weight,berry shape index,soluble solid content,total acid content,soluble solids to acidity ratio,pulling resistance,turgor pressure and flesh firmness without skin were comprehensively evaluated,as a result of which,the optimum treatment on‘Miguang’table grape was to apply with GA 320 mg/L+SM 200 mg/L at one week before bloom and GA 325 mg/L+CPPU 3 mg/L at two weeks after bloom.展开更多
Plant growth regulators(PGRs)are a critical regulatory factor that influences plant development and against abiotic or biotic stress.The chemical synthesis of phytohormone analogues represents an effective approach fo...Plant growth regulators(PGRs)are a critical regulatory factor that influences plant development and against abiotic or biotic stress.The chemical synthesis of phytohormone analogues represents an effective approach for developing novel PGRs with enhanced bioactivity,reduced costs,and simplified synthesis.This review provides a comprehensive examination of artificially synthesized PGRs(phytohormone structural analogues and functional analogues)over the past five years,emphasizing the synthesis strategy,bioactivity,structure-activity relationships,and target protein.This review argues that the synthesis of functional analogues of phytohormones represents a crucial in the advancement of novel PGRs,and optimization of synthetic procedures would greatly facilitate the commercialization of these PGRs.展开更多
Low sperm motility is one of the main causes of male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR, an anion channel protein) is related to the progressive motility of sperm. CFTR disruptor CF...Low sperm motility is one of the main causes of male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR, an anion channel protein) is related to the progressive motility of sperm. CFTR disruptor CFTRinh-172 or forskolin (FSK) in this study were used to treat human sperm separately, and the rates of sperm autophagy and progressive motility, mitochondrial membrane potential (MMP) and ATP concentration, and the expression levels of related factors were detected to explore their relationship. It was showed that sperms treated with CFTRinh-172 or FSK reduced the levels of cAMP, CFTR and PKA, but increased sperm autophagy rate, expression levels of AMPK and LC3B. However, reactive oxygen species content had no significant difference. It was indicated that low level of CFTR performed with cAMP and its downstream effectors such as PKA and AMPK to regulate mitochondrial structure and function, leading to increased autophagy rate and reduced vitality of sperm.展开更多
Plant growth regulators(PGRs)are chemical substances that imitate the functions of phytohormones to enhance the crop yield and the harvest process.Phenylurea-derived plant growth regulators are known for their excelle...Plant growth regulators(PGRs)are chemical substances that imitate the functions of phytohormones to enhance the crop yield and the harvest process.Phenylurea-derived plant growth regulators are known for their excellent efficacy in promoting fruit growth,particularly in kiwifruit,grapes,and melons.Phenylurea derivatives represent one class of the highly efficient and versatile PGRs.Specifically,forchlorfenuron(CPPU,N-(2-chloro-4-pyridinyl)-N0-phenylurea)exhibits similar growth-regulating efficacy to cytokinins and has a significant impact on the plant growth and the crop yield.As a result,there is growing interest in exploring the incorporation of various phenylurea moieties into agrochemicals to enhance their regulatory properties on crops.This review aims to provide a comprehensive overview on representative synthetic approaches for phenylurea derived PGRs.Additionally,we provide our perspective on the future development in this active researchfield.展开更多
Plant growth regulators(PGRs)play an important role in increasing crop yield,and quality,and enhancing crop stress resistance in agricultural production,especially for important crops.PGRs can affect the transport and...Plant growth regulators(PGRs)play an important role in increasing crop yield,and quality,and enhancing crop stress resistance in agricultural production,especially for important crops.PGRs can affect the transport and distribution of assimilates by changing the content and distribution of endogenous hormones in plants.Numerous empirical research results have proven that PGRs have an important impact on the growth,development,and yield composition of wheat.Taking wheat plants as an example,this study reviews the application of PGRs in wheat production and explores their impact on wheat growth and yield.Furthermore,residues and microbial degradation of PGRs are summarized in detail.Finally,future research directions on PGR application in wheat production are proposed.This summary is of great significance for understanding the role of PGRs in wheat production.展开更多
Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflo...Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflower (Carthamus tinctorius L.) as an alternative biodiesel raw material. Four plant growth regulators (PGR) were used to boost the production of safflower. Thirteen treatments were constituted from the four plant regulators and applied to the safflower crop arranged in completely randomised design, repeated three times. The results show that the effect of plant growth regulators was not more than that of the control. More studies have to be channelled towards the relationship between safflower and plant growth regulators.展开更多
As a data protection legislation with the dual objectives of market regulation and government supervision,the EU General Data Protection Regulation(GDPR)is designed to promote the cultivation of a market for data ele⁃...As a data protection legislation with the dual objectives of market regulation and government supervision,the EU General Data Protection Regulation(GDPR)is designed to promote the cultivation of a market for data ele⁃ments and to regulate the data processing subjects'behaviour.The civil legal norms to participate in the data market regulation are introduced,and a right-protected mode with the obligation norms of data controllers as the core is started by GDPR.However,from the perspective of GDPR's global enforcement effectiveness,as an export-orientated global standard and protection framework,the power regulation model of the EU's single digital market is facing the in⁃novative incentives of data market expansion and the tension of human rights protection.A more modest and moderate data governance regulation model has been opened by a new round of the EU digital market regulation.The legal sce⁃narios transition and digital platforms regulation more fit the regulatory demand and development goals of global digital economy development.The EU's determination to enhance the global digital market share and competitiveness is dem⁃onstrated.For China,the impact and security risks of the new round should be evaluated carefully,drawing on the ex⁃perience of the technical standpoint and institutional framework and regulatory rules of the EU digital market regula⁃tion,providing the regulatory models and Chinese solutions to respond to the EU digital market regulation,and enhanc⁃ing Chinese institutional discourse and rule-making leadership in the global digital economy.展开更多
Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin producti...Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin production regulation,locus A,herein renamed AbsR,a blood survival regulator),a member of the MarR(multiple antibiotic resistance regulator)transcriptional regulator family,governs the expression of capsule biosynthetic genes in human ExPEC and represents a promising druggable target for antimicrobials.However,a deep understanding of the AbsR regulatory mechanism as well as its regulon is lacking.In this study,we present a systems-level analysis of the APEC AbsR regulon using ChIP-Seq(chromatin immunoprecipitation sequencing)and RNA-Seq(RNA sequencing)methods.We found that AbsR directly regulates 99 genes and indirectly regulates 667 genes.Furthermore,we showed that:1)AbsR contributes to antiphagocytotic effects by macrophages and virulence in a mouse model for systemic infection by directly activating the capsular gene cluster;2)AbsR positively impacts biofilm formation via direct regulation of the T2SS(type II secretion system)but plays a marginal role in virulence;and 3)AbsR directly upregulates the acid tolerance signaling system EvgAS to withstand acid stress but is dispensable in ExPEC virulence.Finally,our data indicate that the role of AbsR in virulence gene regulation is relatively conserved in ExPEC strains.Altogether,this study provides a comprehensive analysis of the AbsR regulon and regulatory mechanism,and our data suggest that AbsR likely influences virulence primarily through the control of capsule production.Interestingly,we found that AbsR severely represses the expression of the type I-F CRISPR(clustered regularly interspaced short palindromic repeats)-Cas(CRISPR associated)systems,which could have implications in CRISPR biology and application.展开更多
Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a comm...Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.展开更多
[Objective] This study aimed to investigate the influence of different plant growth regulators on apricot pollen germination and pollen tube growth. [Method] Pollens of six kinds of Xinjiang apricots were cultured in ...[Objective] This study aimed to investigate the influence of different plant growth regulators on apricot pollen germination and pollen tube growth. [Method] Pollens of six kinds of Xinjiang apricots were cultured in solid media supplemented with five plant growth regulators (GA3 , NAA, 2, 4-D, 6-BA, IAA). Then the rate of pollen germination and the length of pollen tube were respectively measured. [Result] In a certain concentration range, GA3 most significantly promoted the pollen germination and the pollen tube growth of Shushanggan, Kalayulvke, Dayoujia, Yiliakeyulvke and Kabakehuanna; NNA had the strongest improvement function on Kumaiti’s pollen germination and pollen tube growth. [Conclusion] All the five plant growth regulators promoted the pollen germination and the pollen tube growth of apricots at low concentration but inhibited them at high concentration.展开更多
[Objective] This study was to investigate the effects of plant growth regulator on accumulation and circulation of potassium in flue-cured tobacco.[Methods] Hydroponics experiment was adopted to study the effects of p...[Objective] This study was to investigate the effects of plant growth regulator on accumulation and circulation of potassium in flue-cured tobacco.[Methods] Hydroponics experiment was adopted to study the effects of plant growth regulator(NAA,GA3,BR) on accumulation and circulation of potassium in flue-cured tobacco.[Results] The BR treatment increased the absorption of potassium,calcium and magnesium in flue-cured tobacco,reduced the potassium emission from the root,enhanced the accumulation and contents and promoted the circulation of potassium in the tobacco plants.There was no statistical difference between the NAA and GA3 treatment.And BR treatment was 0.52%,0.30%,0.28% higher than NAA treatment in enhancing potassium content in tobacco plants at 2,7,12 d after topping.In a word,the results showed that BR treatment was the most.[Conclusion] BR treatment could effectively enhance potassium content in tobacco plants after topping.展开更多
In African countries,regulations on the management of WTE(Waste from Information Technology Equipment)are non-existent or sometimes insufficient,if they exist.This study shows how to mention waste from information tec...In African countries,regulations on the management of WTE(Waste from Information Technology Equipment)are non-existent or sometimes insufficient,if they exist.This study shows how to mention waste from information technology equipment in a country that does not have a regulatory legislative framework or organized management channels.A methodological approach based on documentary research and semi-directed interviews was adopted in this work.The results showed that 54.55%of institutional managers are unaware of the existence of regulations for the management of WTE,both at the national and international levels;72.72%of these managers do not have a specific implementing text for this management;72.73%of institutions have adopted an acquisition policy based on the needs of workers and 81.82%of institutions store WTE in warehouses.Relations with waste collection SMEs(Small and Midsize Enterprises),especially for IT equipment,are limited for 72.73%of institutions.In terms of improving the capacity to manage WEEE(Waste Electrical and Electronic Equipment),90.91%of institutions do not offer training or awareness raising.Overall,no significant indicators are in place to assess WEEE management in institutions,which reflects a lack of commitment and awareness among institutional managers.In addition,there are no financial means for ecological and sustainable management.Although 27.27%of managers are aware of the dangers to human health and the environment related to IT equipment,they are often unaware of the harmful consequences of abandoning it in nature.展开更多
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172723)the Natural Science Foundation of Sichuan(Grant Nos.2023NSFSC1828 and 2022NSFSC1289)+2 种基金the“Xinglin Scholar”Scientific Research Promotion Plan of Chengdu University of Transitional Chinese Medicine(Grant No.BSH2021003)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.ZYYCXTD-D-202209)the Research Funding of Department of Science and Technology of Qinghai Province(Grant No.2023-ZJ-729)。
文摘Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive.It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods:We employed high-throughput sequencing-based high-throughput screening(HTS^(2))to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators.Then,bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results:Utilizing these gene expression signatures,we classified the epigenetic regulators into five distinct clusters,each characterized by specific functions.We discovered functional similarities between BAZ2B and SETMAR,as well as CLOCK and CBX3.Moreover,we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation.Notably,we constructed an epigenetic regulatory network based on the gene expression signatures,which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions:Our work deciphered the extensive regulation among hundreds of epigenetic regulators.The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
基金supported by the National Natural Science Foundation of China(32201781,32100211)the Department of Science and Technology of Jilin Province(20220508112RC,20210101005JC)+1 种基金the Fundamental Research Fund for the Central Universities(2412023YQ005)China Agriculture Research System(CARS04)。
文摘Anthocyanins play crucial roles in pollen protection and pollinator attraction in flowering plants.However,the mechanisms underlying flower color determination and whether floral anthocyanin regulators participate in other processes remain largely unresolved in soybeans(Glycine max).In this study,we investigated the genetic components and mechanisms governing anthocyanin biosynthesis in soybean flowers.Molecular and genetic studies have characterized two antagonistic regulators,the positive activator GmMYBA3 and the negative repressor GmMYBR1,that modulate the gene expression of anthocyanin biosynthesis in soybean flowers.Further findings revealed a regulatory interplay between GmMYBA3 and GmMYBR1 bridged by GmTT8a,highlighting the complexity of anthocyanin regulation in different soybean organs.Exploration of additional soybean cultivars demonstrated the universality of GmMYBA3 and GmMYBR1 in regulating floral anthocyanin biosynthesis-related genes,with GmF3’5’H identified as a crucial determinant of white flower color.This study provides a molecular mechanism underlying soybean flower color determination,paving the way for the molecular modification of soybean flowers to probably enhance their resistance to abiotic stresses and attractiveness to pollinators.
文摘The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was first implemented in the banking sector,to AI governance in an effort to reduce the conflict between regulation and innovation.The AI regulatory sandbox is a new and feasible route for AI governance in China that not only helps to manage the risks of technology application but also prevents inhibiting AI innovation.It keeps inventors'trial-and-error tolerance space inside the regulatory purview while offering a controlled setting for the development and testing of novel AI that hasn't yet been put on the market.By providing full-cycle governance of AI with the principles of agility and inclusive prudence,the regulatory sandbox offers an alternative to the conventional top-down hard regulation,expost regulation,and tight regulation.However,the current system also has inherent limitations and practical obstacles that need to be overcome by a more rational and effective approach.To achieve its positive impact on AI governance,the AI regulatory sandbox system should build and improve the access and exit mechanism,the coordination mechanism between the sandbox and personal information protection,and the mechanisms of exemption,disclosure,and communication.
基金Supported by Capital Medical University Scientific Research Grant for Undergraduate Students(No.XSKY2023026).
文摘Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
基金Supported by Basic Research Funds of Hebei Academy of Agriculture and Forestry Sciences(2023020103)Domestic Training Program for Young Scientific and Technological Talents of Agriculture and Forestry Sciences+3 种基金Hebei Agriculture Research System(HBCT2023150202)Key R&D Program Project of Hebei Provincial Department of Science and Technology(20326813D)The innovation project of modern seed technology(21326310D)HAAFS Science and Technology Innovation Special Project(2022KJCXZX-CGS-1).
文摘The effects of different treatments on the seedlessness and fruit quality of‘Miguang’table grape was studied by using plant growth regulators,gibberellin acid(GA 3)and forchlorfenuron(CPPU),under different concentrations and application time.The results showed that the effects of different treatments on the seedlessness and fruit quality were different.Seedless rate,cluster weight,berry weight,berry shape index,soluble solid content,total acid content,soluble solids to acidity ratio,pulling resistance,turgor pressure and flesh firmness without skin were comprehensively evaluated,as a result of which,the optimum treatment on‘Miguang’table grape was to apply with GA 320 mg/L+SM 200 mg/L at one week before bloom and GA 325 mg/L+CPPU 3 mg/L at two weeks after bloom.
基金the National Natural Science Foundation of China(No.32072445,21762012)the Program of Introducing Talents to Chinese Universities(No.D20023)+1 种基金the Natural Science research project of Guizhou Education Department(No.KY(2018)009)the specific research fund of The Innovation Platform for Academicians of Hainan Province(No.SQ2020PTZ0009)。
文摘Plant growth regulators(PGRs)are a critical regulatory factor that influences plant development and against abiotic or biotic stress.The chemical synthesis of phytohormone analogues represents an effective approach for developing novel PGRs with enhanced bioactivity,reduced costs,and simplified synthesis.This review provides a comprehensive examination of artificially synthesized PGRs(phytohormone structural analogues and functional analogues)over the past five years,emphasizing the synthesis strategy,bioactivity,structure-activity relationships,and target protein.This review argues that the synthesis of functional analogues of phytohormones represents a crucial in the advancement of novel PGRs,and optimization of synthetic procedures would greatly facilitate the commercialization of these PGRs.
文摘Low sperm motility is one of the main causes of male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR, an anion channel protein) is related to the progressive motility of sperm. CFTR disruptor CFTRinh-172 or forskolin (FSK) in this study were used to treat human sperm separately, and the rates of sperm autophagy and progressive motility, mitochondrial membrane potential (MMP) and ATP concentration, and the expression levels of related factors were detected to explore their relationship. It was showed that sperms treated with CFTRinh-172 or FSK reduced the levels of cAMP, CFTR and PKA, but increased sperm autophagy rate, expression levels of AMPK and LC3B. However, reactive oxygen species content had no significant difference. It was indicated that low level of CFTR performed with cAMP and its downstream effectors such as PKA and AMPK to regulate mitochondrial structure and function, leading to increased autophagy rate and reduced vitality of sperm.
基金support from the National Natural Science Foundation of China(22371058,21961006,32172459,22371057,22071036)the National Key Research and Development Program of China(2022YFD1700300)+3 种基金the Science and Technology Department of Guizhou Province(Qiankehejichu-ZK[2021]Key033)the Program of Introducing Talents of Discipline to Universities of China(111 Program,D20023)at Guizhou University,Frontiers Science Center for Asymmetric Synthesis and Medicinal MoleculesDepartment of Education,Guizhou Province[Qianjiaohe KY(2020)004]Guizhou University(China).
文摘Plant growth regulators(PGRs)are chemical substances that imitate the functions of phytohormones to enhance the crop yield and the harvest process.Phenylurea-derived plant growth regulators are known for their excellent efficacy in promoting fruit growth,particularly in kiwifruit,grapes,and melons.Phenylurea derivatives represent one class of the highly efficient and versatile PGRs.Specifically,forchlorfenuron(CPPU,N-(2-chloro-4-pyridinyl)-N0-phenylurea)exhibits similar growth-regulating efficacy to cytokinins and has a significant impact on the plant growth and the crop yield.As a result,there is growing interest in exploring the incorporation of various phenylurea moieties into agrochemicals to enhance their regulatory properties on crops.This review aims to provide a comprehensive overview on representative synthetic approaches for phenylurea derived PGRs.Additionally,we provide our perspective on the future development in this active researchfield.
基金supported by the Anhui Natural Science Foundation Project(No.2008085MB45).
文摘Plant growth regulators(PGRs)play an important role in increasing crop yield,and quality,and enhancing crop stress resistance in agricultural production,especially for important crops.PGRs can affect the transport and distribution of assimilates by changing the content and distribution of endogenous hormones in plants.Numerous empirical research results have proven that PGRs have an important impact on the growth,development,and yield composition of wheat.Taking wheat plants as an example,this study reviews the application of PGRs in wheat production and explores their impact on wheat growth and yield.Furthermore,residues and microbial degradation of PGRs are summarized in detail.Finally,future research directions on PGR application in wheat production are proposed.This summary is of great significance for understanding the role of PGRs in wheat production.
文摘Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflower (Carthamus tinctorius L.) as an alternative biodiesel raw material. Four plant growth regulators (PGR) were used to boost the production of safflower. Thirteen treatments were constituted from the four plant regulators and applied to the safflower crop arranged in completely randomised design, repeated three times. The results show that the effect of plant growth regulators was not more than that of the control. More studies have to be channelled towards the relationship between safflower and plant growth regulators.
基金The special project of Anhui Philosophy and Social Science Planning Project(AHSKXZX2021D03)。
文摘As a data protection legislation with the dual objectives of market regulation and government supervision,the EU General Data Protection Regulation(GDPR)is designed to promote the cultivation of a market for data ele⁃ments and to regulate the data processing subjects'behaviour.The civil legal norms to participate in the data market regulation are introduced,and a right-protected mode with the obligation norms of data controllers as the core is started by GDPR.However,from the perspective of GDPR's global enforcement effectiveness,as an export-orientated global standard and protection framework,the power regulation model of the EU's single digital market is facing the in⁃novative incentives of data market expansion and the tension of human rights protection.A more modest and moderate data governance regulation model has been opened by a new round of the EU digital market regulation.The legal sce⁃narios transition and digital platforms regulation more fit the regulatory demand and development goals of global digital economy development.The EU's determination to enhance the global digital market share and competitiveness is dem⁃onstrated.For China,the impact and security risks of the new round should be evaluated carefully,drawing on the ex⁃perience of the technical standpoint and institutional framework and regulatory rules of the EU digital market regula⁃tion,providing the regulatory models and Chinese solutions to respond to the EU digital market regulation,and enhanc⁃ing Chinese institutional discourse and rule-making leadership in the global digital economy.
基金supported by the National Natural Science Foundation of China Young Scholars Project(31902242)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences(2017–2020)。
文摘Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin production regulation,locus A,herein renamed AbsR,a blood survival regulator),a member of the MarR(multiple antibiotic resistance regulator)transcriptional regulator family,governs the expression of capsule biosynthetic genes in human ExPEC and represents a promising druggable target for antimicrobials.However,a deep understanding of the AbsR regulatory mechanism as well as its regulon is lacking.In this study,we present a systems-level analysis of the APEC AbsR regulon using ChIP-Seq(chromatin immunoprecipitation sequencing)and RNA-Seq(RNA sequencing)methods.We found that AbsR directly regulates 99 genes and indirectly regulates 667 genes.Furthermore,we showed that:1)AbsR contributes to antiphagocytotic effects by macrophages and virulence in a mouse model for systemic infection by directly activating the capsular gene cluster;2)AbsR positively impacts biofilm formation via direct regulation of the T2SS(type II secretion system)but plays a marginal role in virulence;and 3)AbsR directly upregulates the acid tolerance signaling system EvgAS to withstand acid stress but is dispensable in ExPEC virulence.Finally,our data indicate that the role of AbsR in virulence gene regulation is relatively conserved in ExPEC strains.Altogether,this study provides a comprehensive analysis of the AbsR regulon and regulatory mechanism,and our data suggest that AbsR likely influences virulence primarily through the control of capsule production.Interestingly,we found that AbsR severely represses the expression of the type I-F CRISPR(clustered regularly interspaced short palindromic repeats)-Cas(CRISPR associated)systems,which could have implications in CRISPR biology and application.
基金National Key Technology R&D Program of China(2022YFF1001403)National Science Foundation of China(32101764).
文摘Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.
基金Supported by Key Technology Integration and Demonstration of Xinjiang Characteristic Fruit Trees'High Efficiency and Safe Production,Science and Technical Plan Project of Xinjiang Uygur Autonomous Region(201130102)Key Technology Integration and Demonstration of Xinjiang Apricot Industrial Development,Science and Technical Plan Project of Xinjiang Uygur Autonomous Region(200931101)Financial Support from Xinjiang Uygur Autonomous Region Fruit Trees Key Subject~~
文摘[Objective] This study aimed to investigate the influence of different plant growth regulators on apricot pollen germination and pollen tube growth. [Method] Pollens of six kinds of Xinjiang apricots were cultured in solid media supplemented with five plant growth regulators (GA3 , NAA, 2, 4-D, 6-BA, IAA). Then the rate of pollen germination and the length of pollen tube were respectively measured. [Result] In a certain concentration range, GA3 most significantly promoted the pollen germination and the pollen tube growth of Shushanggan, Kalayulvke, Dayoujia, Yiliakeyulvke and Kabakehuanna; NNA had the strongest improvement function on Kumaiti’s pollen germination and pollen tube growth. [Conclusion] All the five plant growth regulators promoted the pollen germination and the pollen tube growth of apricots at low concentration but inhibited them at high concentration.
基金Supported by program from Tobacco Monopoly Bureau of Guangxi Zhuang Nationality Autonomous Region(Research and Demonstration of Comprehensive Technique for Enhancing the Absorption and Accumulation of Potassium in Flue-cured Tobacco)Science and Research Fund from Guangxi University(x071057)Innovation Project of Guangxi Graduate Education(2008105930903M012)~~
文摘[Objective] This study was to investigate the effects of plant growth regulator on accumulation and circulation of potassium in flue-cured tobacco.[Methods] Hydroponics experiment was adopted to study the effects of plant growth regulator(NAA,GA3,BR) on accumulation and circulation of potassium in flue-cured tobacco.[Results] The BR treatment increased the absorption of potassium,calcium and magnesium in flue-cured tobacco,reduced the potassium emission from the root,enhanced the accumulation and contents and promoted the circulation of potassium in the tobacco plants.There was no statistical difference between the NAA and GA3 treatment.And BR treatment was 0.52%,0.30%,0.28% higher than NAA treatment in enhancing potassium content in tobacco plants at 2,7,12 d after topping.In a word,the results showed that BR treatment was the most.[Conclusion] BR treatment could effectively enhance potassium content in tobacco plants after topping.
文摘In African countries,regulations on the management of WTE(Waste from Information Technology Equipment)are non-existent or sometimes insufficient,if they exist.This study shows how to mention waste from information technology equipment in a country that does not have a regulatory legislative framework or organized management channels.A methodological approach based on documentary research and semi-directed interviews was adopted in this work.The results showed that 54.55%of institutional managers are unaware of the existence of regulations for the management of WTE,both at the national and international levels;72.72%of these managers do not have a specific implementing text for this management;72.73%of institutions have adopted an acquisition policy based on the needs of workers and 81.82%of institutions store WTE in warehouses.Relations with waste collection SMEs(Small and Midsize Enterprises),especially for IT equipment,are limited for 72.73%of institutions.In terms of improving the capacity to manage WEEE(Waste Electrical and Electronic Equipment),90.91%of institutions do not offer training or awareness raising.Overall,no significant indicators are in place to assess WEEE management in institutions,which reflects a lack of commitment and awareness among institutional managers.In addition,there are no financial means for ecological and sustainable management.Although 27.27%of managers are aware of the dangers to human health and the environment related to IT equipment,they are often unaware of the harmful consequences of abandoning it in nature.