AIM: To identify kinases involved in phenotype regulation of vascular endothelial cells(VECs): Proproliferative G-protein signaling 5(RGS5)^(high)(typeⅠ) vs anti-proliferative RGS5^(low)(typeⅡ) VECs.METHODS: Proteom...AIM: To identify kinases involved in phenotype regulation of vascular endothelial cells(VECs): Proproliferative G-protein signaling 5(RGS5)^(high)(typeⅠ) vs anti-proliferative RGS5^(low)(typeⅡ) VECs.METHODS: Proteomic kinase assays were performed to identify the crucial kinase involved in the phenotype regulation of human VECs using typeⅠ VECs, which promotes the proliferation of human vascular smooth muscle cells(VSMCs), and typeⅡ VECs, which suppress the proliferation of human VSMCs. The assays were performed using multiple pairs of typeⅠ and typeⅡ VECs to obtain the least number of candidates. The involvement of the candidate kinases was verified by evaluating the effects of their specific inhibitors on the phenotype regulation of human VECs as well as the expression levels of regulator of RGS5, which is the causative gene for the "typeⅡ to typeⅠ" phenotype conversion of human VECs. RESULTS: p38α mitogen-activated protein kinase(p38α MAPK) was the only kinase that showed distinctive activities between typeⅠ and typeⅡ VECs: p38α MAPK activities were low and high in type-Ⅰand typeⅡ VECs, respectively. We found that an enforced expression of RGS5 indeed lowered p38α MAPK activitiesin typeⅡ VECs. Furthermore, treatments with a p38α MAPK inhibitor nullified the anti-proliferative potential in typeⅡ VECs. Interestingly, MAPK inhibitor treatments enhanced the induction of RGS5 gene. Thus, there is a vicious cycle between "RGS5 induction" and "p38α MAPK inhibition", which can explain the unidirectional process in the stress-induced "typeⅡ to typeⅠ" conversions of human VECs. To understand the upstream signaling of RGS5, which is known as an inhibitory molecule against the G protein-coupled receptor(GPCR)-mediated signaling, we examined the effects of RGS5 overexpression on the signaling events from sphingosine-1-phosphate(S1P) to N-cadherin, because S1 P receptors belong to the GPCR family gene and N-cadherin, one of their downstream effectors, is reportedly involved in the regulation of VEC-VSMC interactions. We found that RGS5 specifically bound with S1P1. Moreover, N-cadherin localization at intercellular junctions in typeⅡ VECs was abolished by "RGS5 overexpression" and "p38α MAPK inhibition".CONCLUSION: p38α MAPK plays crucial roles in "type-Ⅰ vs type-Ⅱ" phenotype regulations of human VECs at the downstream of RGS5.展开更多
AIM: To integrally understand the effects of human vascular endothelial cells(VECs) on the proliferation of vascular smooth muscle cells(VSMCs).METHODS: Various kinds of human VECs of different origins were co-culture...AIM: To integrally understand the effects of human vascular endothelial cells(VECs) on the proliferation of vascular smooth muscle cells(VSMCs).METHODS: Various kinds of human VECs of different origins were co-cultured with human aortic smooth muscle cells, a representative of human VSMCs. To exclude the irrelevant effects due to growth competition between VECs and VSMCs, the proliferation of VECs had previously been arrested via a low-dose gamma rayirradiation. To discriminately analyze the proliferation of VSMCs from that of VECs, the former cells were labeled with red fluorescent dye while the latter cells were labeled with green fluorescent dye before performing coculture experiments. After 4 d, total cells were harvested and subjected to flow cytometric analyses. Decrements in red fluorescence intensities due to proliferationmediated dilutions were measured and mathematically processed using a specific software to quantitatively evaluate the proliferation of VSMCs. The findings obtained from the flow cytometry-based analyses were further validated by microscopic observations. RESULTS: Commercially available primary cultured human VECs exclusively promoted VSMC proliferation regardless of their tissue origins and we termed these pro-proliferative VECs as "typeⅠ". By contrast, VECs freshly generated from human bone marrow-derived endothelial progenitors cells or human pluripotent stem cells including embryonic stem cells and induced pluripotent stem cells suppressed VSMC proliferation and we termed these anti-proliferative VECs as "typeⅡ". Repetitive subcultures as well as oxidative stress induced "type Ⅱ VECs to typeⅠ" conversion along with an induction of Regulator of G-protein signaling 5(RGS5)Compatibly, anti-oxidant treatments suppressed both the subculture-dependent "typeⅡ to typeⅠ" conversion and an induction of RGS5 gene. Immunostaining studies of clinical specimens indicated that RGS5 protein expressions in endothelial layers were low in norma arteries but they were up-regulated in pathologica arteries including hypertension, atherosclerosis and autoimmune vasculitis in a dose-dependent manner Overexpression and knockdown of RGS5 caused that"typeⅡ to typeⅠ" and "typeⅠ to type Ⅱ" phenotype conversions of VECs, respectively. CONCLUSION: Human VECs are categorized into two types: pro-proliferative RGS5^(high) VECs(typeⅠ) and antiproliferative RGS5 ^(low) VECs(typeⅡ).展开更多
基金Supported by A Grant-in-Aid from the Ministry of HealthLabour and Welfare of Japan+2 种基金No.KHD1017by that from JSTPRESTO
文摘AIM: To identify kinases involved in phenotype regulation of vascular endothelial cells(VECs): Proproliferative G-protein signaling 5(RGS5)^(high)(typeⅠ) vs anti-proliferative RGS5^(low)(typeⅡ) VECs.METHODS: Proteomic kinase assays were performed to identify the crucial kinase involved in the phenotype regulation of human VECs using typeⅠ VECs, which promotes the proliferation of human vascular smooth muscle cells(VSMCs), and typeⅡ VECs, which suppress the proliferation of human VSMCs. The assays were performed using multiple pairs of typeⅠ and typeⅡ VECs to obtain the least number of candidates. The involvement of the candidate kinases was verified by evaluating the effects of their specific inhibitors on the phenotype regulation of human VECs as well as the expression levels of regulator of RGS5, which is the causative gene for the "typeⅡ to typeⅠ" phenotype conversion of human VECs. RESULTS: p38α mitogen-activated protein kinase(p38α MAPK) was the only kinase that showed distinctive activities between typeⅠ and typeⅡ VECs: p38α MAPK activities were low and high in type-Ⅰand typeⅡ VECs, respectively. We found that an enforced expression of RGS5 indeed lowered p38α MAPK activitiesin typeⅡ VECs. Furthermore, treatments with a p38α MAPK inhibitor nullified the anti-proliferative potential in typeⅡ VECs. Interestingly, MAPK inhibitor treatments enhanced the induction of RGS5 gene. Thus, there is a vicious cycle between "RGS5 induction" and "p38α MAPK inhibition", which can explain the unidirectional process in the stress-induced "typeⅡ to typeⅠ" conversions of human VECs. To understand the upstream signaling of RGS5, which is known as an inhibitory molecule against the G protein-coupled receptor(GPCR)-mediated signaling, we examined the effects of RGS5 overexpression on the signaling events from sphingosine-1-phosphate(S1P) to N-cadherin, because S1 P receptors belong to the GPCR family gene and N-cadherin, one of their downstream effectors, is reportedly involved in the regulation of VEC-VSMC interactions. We found that RGS5 specifically bound with S1P1. Moreover, N-cadherin localization at intercellular junctions in typeⅡ VECs was abolished by "RGS5 overexpression" and "p38α MAPK inhibition".CONCLUSION: p38α MAPK plays crucial roles in "type-Ⅰ vs type-Ⅱ" phenotype regulations of human VECs at the downstream of RGS5.
基金Supported by A Grant-in-Aid from the Ministry of HealthLabour and Welfare of Japan(KHD1017)a Grant-in-Aid from JST and PRESTO
文摘AIM: To integrally understand the effects of human vascular endothelial cells(VECs) on the proliferation of vascular smooth muscle cells(VSMCs).METHODS: Various kinds of human VECs of different origins were co-cultured with human aortic smooth muscle cells, a representative of human VSMCs. To exclude the irrelevant effects due to growth competition between VECs and VSMCs, the proliferation of VECs had previously been arrested via a low-dose gamma rayirradiation. To discriminately analyze the proliferation of VSMCs from that of VECs, the former cells were labeled with red fluorescent dye while the latter cells were labeled with green fluorescent dye before performing coculture experiments. After 4 d, total cells were harvested and subjected to flow cytometric analyses. Decrements in red fluorescence intensities due to proliferationmediated dilutions were measured and mathematically processed using a specific software to quantitatively evaluate the proliferation of VSMCs. The findings obtained from the flow cytometry-based analyses were further validated by microscopic observations. RESULTS: Commercially available primary cultured human VECs exclusively promoted VSMC proliferation regardless of their tissue origins and we termed these pro-proliferative VECs as "typeⅠ". By contrast, VECs freshly generated from human bone marrow-derived endothelial progenitors cells or human pluripotent stem cells including embryonic stem cells and induced pluripotent stem cells suppressed VSMC proliferation and we termed these anti-proliferative VECs as "typeⅡ". Repetitive subcultures as well as oxidative stress induced "type Ⅱ VECs to typeⅠ" conversion along with an induction of Regulator of G-protein signaling 5(RGS5)Compatibly, anti-oxidant treatments suppressed both the subculture-dependent "typeⅡ to typeⅠ" conversion and an induction of RGS5 gene. Immunostaining studies of clinical specimens indicated that RGS5 protein expressions in endothelial layers were low in norma arteries but they were up-regulated in pathologica arteries including hypertension, atherosclerosis and autoimmune vasculitis in a dose-dependent manner Overexpression and knockdown of RGS5 caused that"typeⅡ to typeⅠ" and "typeⅠ to type Ⅱ" phenotype conversions of VECs, respectively. CONCLUSION: Human VECs are categorized into two types: pro-proliferative RGS5^(high) VECs(typeⅠ) and antiproliferative RGS5 ^(low) VECs(typeⅡ).