期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Obstruction Theory and Coincidences in Positive Codimension 被引量:2
1
作者 Daciberg GONCALVES Jerzy JEZIERSKI Peter WONG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第5期1591-1602,共12页
Let f, g : X→Y be two maps between closed manifolds with dim X ≥ dim Y = n ≥ 3. We study the primary obstruction on(f, g) to deforming f and g to be coincidence free on the n-th skeleton of X. We give examples f... Let f, g : X→Y be two maps between closed manifolds with dim X ≥ dim Y = n ≥ 3. We study the primary obstruction on(f, g) to deforming f and g to be coincidence free on the n-th skeleton of X. We give examples for which obstructions to deforming f and g to be coincidence free are detected by on (f, g). 展开更多
关键词 Nielsen number reidemeister number coincidence theory obstruction theory
原文传递
Nielsen coincidence theory on infra-solvmanifolds of Sol
2
作者 Jong Bum Lee Karen Regina Panzarin 《Science China Mathematics》 SCIE CSCD 2021年第8期1861-1884,共24页
We derive averaging formulas for the Lefschetz coincidence numbers,the Nielsen coincidence numbers and the Reidemeister coincidence numbers of maps on infra-solvmanifolds modeled on a connected and simply connected so... We derive averaging formulas for the Lefschetz coincidence numbers,the Nielsen coincidence numbers and the Reidemeister coincidence numbers of maps on infra-solvmanifolds modeled on a connected and simply connected solvable Lie group of type(R).As an application,we compare our formula for the Nielsen coincidence numbers with a result of Jezierski(1992)for pairs of maps on some infra-solvmanifolds of Sol.For all the pairs of self-maps of a nonorientable infra-solvmanifold of Sol,we determine the sets of all the possible values of the Nielsen coincidence numbers and the Reidemeister coincidence numbers. 展开更多
关键词 averaging formula infra-solvmanifold Lefschetz coincidence number Nielsen coincidence number reidemeister coincidence number Sol-geometry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部