This article broadens terminology and approaches that continue to advance time modelling within a relationalist framework. Time is modeled as a single dimension, flowing continuously through independent privileged poi...This article broadens terminology and approaches that continue to advance time modelling within a relationalist framework. Time is modeled as a single dimension, flowing continuously through independent privileged points. Introduced as absolute point-time, abstract continuous time is a backdrop for concrete relational-based time that is finite and discrete, bound to the limits of a real-world system. We discuss how discrete signals at a point are used to temporally anchor zero-temporal points [t = 0] in linear time. Object-oriented temporal line elements, flanked by temporal point elements, have a proportional geometric identity quantifiable by a standard unit system and can be mapped on a natural number line. Durations, line elements, are divisible into ordered unit ratio elements using ancient timekeeping formulas. The divisional structure provides temporal classes for rotational (Rt24t) and orbital (Rt18) sample periods, as well as a more general temporal class (Rt12) applicable to either sample or frame periods. We introduce notation for additive cyclic counts of sample periods, including divisional units, for calendar-like formatting. For system modeling, unit structures with dihedral symmetry, group order, and numerical order are shown to be applicable to Euclidean modelling. We introduce new functions for bijective and non-bijective mapping, modular arithmetic for cyclic-based time counts, and a novel formula relating to a subgroup of Pythagorean triples, preserving dihedral n-polygon symmetries. This article presents a new approach to model time in a relationalistic framework.展开更多
In mathematics, space encompasses various structured sets such as Euclidean, metric, or vector space. This article introduces temporal space—a novel concept independent of traditional spatial dimensions and frames of...In mathematics, space encompasses various structured sets such as Euclidean, metric, or vector space. This article introduces temporal space—a novel concept independent of traditional spatial dimensions and frames of reference, accommodating multiple object-oriented durations in a dynamical system. The novelty of building temporal space using finite geometry is rooted in recent advancements in the theory of relationalism which utilizes Euclidean geometry, set theory, dimensional analysis, and a causal signal system. Multiple independent and co-existing cyclic durations are measurable as a network of finite one-dimensional timelines. The work aligns with Leibniz’s comments on relational measures of duration with the addition of using discrete cyclic relational events that define these finite temporal spaces, applicable to quantum and classical physics. Ancient formulas have symmetry along with divisional and subdivisional orders of operations that create discrete and ordered temporal geometric elements. Elements have cyclically conserved symmetry but unique cyclic dimensional quantities applicable for anchoring temporal equivalence relations in linear time. We present both fixed equivalences and expanded periods of temporal space offering a non-Greek calendar methodology consistent with ancient global timekeeping descriptions. Novel applications of Euclid’s division algorithm and Cantor’s pairing function introduce a novel paired function equation. The mathematical description of finite temporal space within relationalism theory offers an alternative discrete geometric methodology for examining ancient timekeeping with new hypotheses for Egyptian calendars.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show...Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes.展开更多
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro...How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.展开更多
Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave...Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave propagation in multilayered vdW metamaterials is reported in this paper.Molecular dynamics(MD)simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials.The results show that the graphene/MoS_(2)metamaterials have an elastic wave bandgap in the terahertz range.The MSM for the multilayered vdW metamaterials is proposed,and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials.The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional(2D)materials.The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors.展开更多
The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of...The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.展开更多
We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has...We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has a~2%scale uncertainty by taking the renormalization scale as m_(b)(m_(b))and varying it within the usual range of [m_(b)(m_(b))/2,2m_(b)(m_(b))].展开更多
To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean d...To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.展开更多
Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic ...Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic wave propagation.The PCBPS is theoretically equivalent to a spring-oscillator system to investigate the mechanism of bandgap,analyze the wave propagation mechanisms,and further form its geometrical and physical criteria for tuning the elastic wave propagation.With the equivalent model,we calculate the analytical solutions of the dispersion relations to demonstrate its adjustability,and investigate the wave propagation characteristics through the PCBPS.To validate the equivalent system,the finite element method(FEM)is employed.It is revealed that the bandgaps of the PCBPS can be turned on-and-off and shifted by varying its physical and geometrical characteristics.The findings are highly promising for advancing the practical application of periodic structures in wave insulation and propagation control.展开更多
Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existi...Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existing work.In addition,it is difficult to manipulate high-dimensional quantum states under the existing conditions of quantum information processing,leading to low practicality and engineering feasibility of protocols for comparing size relation.Considering this situation,we propose an innovative protocol.The proposed protocol can make size comparison by exploiting more manageable two-dimensional Bell states,which significantly enhances its feasibility with current quantum technologies.Simultaneously,the proposed protocol enables multiple participants to compare their privacies with the semi-quantum model.The communication process of the protocol is simulated on the IBM Quantum Experience platform to verify its effectiveness.Security analysis shows that the proposed protocol can withstand common attacks while preserving the privacies of all participants.Thus,the devised protocol may provide an important reference for implementation of quantum private size comparison protocols.展开更多
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu...Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.展开更多
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information ...Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.展开更多
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c...Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.展开更多
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ...Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.展开更多
Monogamy and polygamy relations are essential properties of quantum entanglement,which characterize the distributions of entanglement in multipartite systems.In this paper,we establish the general monogamy relations ...Monogamy and polygamy relations are essential properties of quantum entanglement,which characterize the distributions of entanglement in multipartite systems.In this paper,we establish the general monogamy relations forγ-th(0≤γ≤α,α≥1)power of quantum entanglement based on unified-(q,s)entanglement and polygamy relations forδ-th(δ≥β,0≤β≤1)power of entanglement of assistance based on unified-(q,s)entanglement of assistance,which provides a complement to the previous research in terms of different parameter regions ofγandδ.These results are then applied to specific quantum correlations,e.g.,entanglement of formation,Renyi-q entanglement of assistance and Tsallis-q entanglement of assistance to get the corresponding monogamy and polygamy inequalities.Moreover,typical examples are presented for illustration.展开更多
The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep ...The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge.展开更多
Agricultural investment project selection is a complex multi-criteria decision-making problem,as agricultural projects are easily influenced by various risk factors,and the evaluation information provided by decisionm...Agricultural investment project selection is a complex multi-criteria decision-making problem,as agricultural projects are easily influenced by various risk factors,and the evaluation information provided by decisionmakers usually involves uncertainty and inconsistency.Existing literature primarily employed direct preference elicitation methods to address such issues,necessitating a great cognitive effort on the part of decision-makers during evaluation,specifically,determining the weights of criteria.In this study,we propose an indirect preference elicitation method,known as a preference disaggregation method,to learn decision-maker preference models fromdecision examples.To enhance evaluation ease,decision-makers merely need to compare pairs of alternatives with which they are familiar,also known as reference alternatives.Probabilistic linguistic preference relations are employed to account for the presence of incomplete and uncertain information in such pairwise comparisons.To address the inconsistency among a group of decision-makers,we develop a pair of 0-1mixed integer programming models that consider both the semantics of linguistic terms and the belief degrees of decision-makers.Finally,we conduct a case study and comparative analysis.Results reveal the effectiveness of the proposed model in solving agricultural investment project selection problems with uncertain and inconsistent decision information.展开更多
Complex plasma fluctuation processes have been extensively studied in many aspects,especially lattice waves in strongly coupled plasma crystals,which are of great significance for understanding fundamental physical ph...Complex plasma fluctuation processes have been extensively studied in many aspects,especially lattice waves in strongly coupled plasma crystals,which are of great significance for understanding fundamental physical phenomena.A challenge of experimental investigations in two-dimensional strongly coupled complex plasma crystals is to keep the main body and foreign particles of different masses on the same horizontal plane.To solve the problem,we have proposed a potential well formed by two negatively biased grids to bind the negatively charged particles in a two-dimensional(2D)plane,thus achieving a 2D plasma crystal in the microgravity environment.The study of such phenomena in complex plasma crystals under microgravity environment then becomes possible.In this paper,we focus on the continuum spectrum,including both phonon and optic branches of the impurity mode in a 2D system in microgravity environments.The results show the dispersion relation of the longitudinal and transverse impurity oscillation modes and their properties.Considering the macroscopic visibility of complex mesoscopic particle lattices,theoretical and experimental studies on this kind of complex plasma systems will help us further understand the physical nature of a wide range of condensed matters.展开更多
Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way ...Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.展开更多
文摘This article broadens terminology and approaches that continue to advance time modelling within a relationalist framework. Time is modeled as a single dimension, flowing continuously through independent privileged points. Introduced as absolute point-time, abstract continuous time is a backdrop for concrete relational-based time that is finite and discrete, bound to the limits of a real-world system. We discuss how discrete signals at a point are used to temporally anchor zero-temporal points [t = 0] in linear time. Object-oriented temporal line elements, flanked by temporal point elements, have a proportional geometric identity quantifiable by a standard unit system and can be mapped on a natural number line. Durations, line elements, are divisible into ordered unit ratio elements using ancient timekeeping formulas. The divisional structure provides temporal classes for rotational (Rt24t) and orbital (Rt18) sample periods, as well as a more general temporal class (Rt12) applicable to either sample or frame periods. We introduce notation for additive cyclic counts of sample periods, including divisional units, for calendar-like formatting. For system modeling, unit structures with dihedral symmetry, group order, and numerical order are shown to be applicable to Euclidean modelling. We introduce new functions for bijective and non-bijective mapping, modular arithmetic for cyclic-based time counts, and a novel formula relating to a subgroup of Pythagorean triples, preserving dihedral n-polygon symmetries. This article presents a new approach to model time in a relationalistic framework.
文摘In mathematics, space encompasses various structured sets such as Euclidean, metric, or vector space. This article introduces temporal space—a novel concept independent of traditional spatial dimensions and frames of reference, accommodating multiple object-oriented durations in a dynamical system. The novelty of building temporal space using finite geometry is rooted in recent advancements in the theory of relationalism which utilizes Euclidean geometry, set theory, dimensional analysis, and a causal signal system. Multiple independent and co-existing cyclic durations are measurable as a network of finite one-dimensional timelines. The work aligns with Leibniz’s comments on relational measures of duration with the addition of using discrete cyclic relational events that define these finite temporal spaces, applicable to quantum and classical physics. Ancient formulas have symmetry along with divisional and subdivisional orders of operations that create discrete and ordered temporal geometric elements. Elements have cyclically conserved symmetry but unique cyclic dimensional quantities applicable for anchoring temporal equivalence relations in linear time. We present both fixed equivalences and expanded periods of temporal space offering a non-Greek calendar methodology consistent with ancient global timekeeping descriptions. Novel applications of Euclid’s division algorithm and Cantor’s pairing function introduce a novel paired function equation. The mathematical description of finite temporal space within relationalism theory offers an alternative discrete geometric methodology for examining ancient timekeeping with new hypotheses for Egyptian calendars.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金supported by the Natural Science Foundation of China(Grant Nos.22179093,21905202,and 51972312)the Natural Science Foundation of Liaoning Province,China(Grant No.2020-MS-003)+1 种基金the Australian Research Council through the Discovery Project(No.DP210102215)the Electron Microscopy Center in the University of Wollongong.The theoretical calculations performed in this work were carried out on TianHe-1(A)at the National Supercomputer Center in Tianjin.
文摘Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes.
文摘How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.11925205)the National Natural Science Foundation of China(Nos.51921003 and U2341230)。
文摘Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave propagation in multilayered vdW metamaterials is reported in this paper.Molecular dynamics(MD)simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials.The results show that the graphene/MoS_(2)metamaterials have an elastic wave bandgap in the terahertz range.The MSM for the multilayered vdW metamaterials is proposed,and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials.The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional(2D)materials.The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors.
基金supported by the National Natural Science Foundation of China(Nos.U1804263,U1736214,62172435)the Zhongyuan Science and Technology Innovation Leading Talent Project(No.214200510019).
文摘The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12175025,12247129,and 12347101)the Graduate Research and Innovation Foundation of Chongqing,China(Grant No.ydstd1912)the Foundation of Chongqing Normal University(Grant No.24XLB015)。
文摘We explore the properties of the bottom-quark on-shell mass(M_(b))by using its relation to the MS mass(m_(b)).At present,this MS-on-shell relation has been known up to four-loop QCD corrections,which however still has a~2%scale uncertainty by taking the renormalization scale as m_(b)(m_(b))and varying it within the usual range of [m_(b)(m_(b))/2,2m_(b)(m_(b))].
基金the Sichuan Science and Technology Program(Nos.23ZHCG0049,2023YFG0078,23ZHCG0030,2021ZDZX0007)SCU-SUINING Project(2022CDSN-14).
文摘To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.
基金supported by the National Natural Science Foundation of China(Nos.12172012 and 11802005)。
文摘Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic wave propagation.The PCBPS is theoretically equivalent to a spring-oscillator system to investigate the mechanism of bandgap,analyze the wave propagation mechanisms,and further form its geometrical and physical criteria for tuning the elastic wave propagation.With the equivalent model,we calculate the analytical solutions of the dispersion relations to demonstrate its adjustability,and investigate the wave propagation characteristics through the PCBPS.To validate the equivalent system,the finite element method(FEM)is employed.It is revealed that the bandgaps of the PCBPS can be turned on-and-off and shifted by varying its physical and geometrical characteristics.The findings are highly promising for advancing the practical application of periodic structures in wave insulation and propagation control.
基金supported by the National Natural Science Foundation of China(Grant No.62161025)the Project of Scientific and Technological Innovation Base of Jiangxi Province(Grant No.20203CCD46008)the Jiangxi Provincial Key Laboratory of Fusion and Information Control(Grant No.20171BCD40005).
文摘Currently,all quantum private comparison protocols based on two-dimensional quantum states can only compare equality,via using high-dimensional quantum states that it is possible to compare the size relation in existing work.In addition,it is difficult to manipulate high-dimensional quantum states under the existing conditions of quantum information processing,leading to low practicality and engineering feasibility of protocols for comparing size relation.Considering this situation,we propose an innovative protocol.The proposed protocol can make size comparison by exploiting more manageable two-dimensional Bell states,which significantly enhances its feasibility with current quantum technologies.Simultaneously,the proposed protocol enables multiple participants to compare their privacies with the semi-quantum model.The communication process of the protocol is simulated on the IBM Quantum Experience platform to verify its effectiveness.Security analysis shows that the proposed protocol can withstand common attacks while preserving the privacies of all participants.Thus,the devised protocol may provide an important reference for implementation of quantum private size comparison protocols.
文摘Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.
基金supported in part by the Beijing Natural Science Foundation under Grants L211020 and M21032in part by the National Natural Science Foundation of China under Grants U1836106 and 62271045in part by the Scientific and Technological Innovation Foundation of Foshan under Grants BK21BF001 and BK20BF010。
文摘Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.
基金This study was funded by the National Natural Science Foundation of China(42062019,42002283)the Project of Qinghai Science&Technology Department(2021-ZJ-927).
文摘Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.
基金supported by the opening fund of State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology(No.LP2310)the opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection at Chengdu University of Technology(No.SKLGP2023K001)+2 种基金the Shandong Provincial Key Laboratory of Ocean Engineering with grant at Ocean University of China(No.kloe200301)the National Natural Science Foundation of China(Nos.42022052,42077272 and 52108337)the Science and Technology Innovation Serve Project of Wenzhou Association for Science and Technology(No.KJFW65).
文摘Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175147)the Disciplinary Funding of Beijing Technology and Business University,the Fundamental Research Funds for the Central Universities(Grant No.2022JKF02015)the Research and Development Program of Beijing Municipal Education Commission(Grant No.KM202310011012).
文摘Monogamy and polygamy relations are essential properties of quantum entanglement,which characterize the distributions of entanglement in multipartite systems.In this paper,we establish the general monogamy relations forγ-th(0≤γ≤α,α≥1)power of quantum entanglement based on unified-(q,s)entanglement and polygamy relations forδ-th(δ≥β,0≤β≤1)power of entanglement of assistance based on unified-(q,s)entanglement of assistance,which provides a complement to the previous research in terms of different parameter regions ofγandδ.These results are then applied to specific quantum correlations,e.g.,entanglement of formation,Renyi-q entanglement of assistance and Tsallis-q entanglement of assistance to get the corresponding monogamy and polygamy inequalities.Moreover,typical examples are presented for illustration.
基金This research is supported by the Chinese Special Projects of the National Key Research and Development Plan(2019YFB1405702).
文摘The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge.
文摘Agricultural investment project selection is a complex multi-criteria decision-making problem,as agricultural projects are easily influenced by various risk factors,and the evaluation information provided by decisionmakers usually involves uncertainty and inconsistency.Existing literature primarily employed direct preference elicitation methods to address such issues,necessitating a great cognitive effort on the part of decision-makers during evaluation,specifically,determining the weights of criteria.In this study,we propose an indirect preference elicitation method,known as a preference disaggregation method,to learn decision-maker preference models fromdecision examples.To enhance evaluation ease,decision-makers merely need to compare pairs of alternatives with which they are familiar,also known as reference alternatives.Probabilistic linguistic preference relations are employed to account for the presence of incomplete and uncertain information in such pairwise comparisons.To address the inconsistency among a group of decision-makers,we develop a pair of 0-1mixed integer programming models that consider both the semantics of linguistic terms and the belief degrees of decision-makers.Finally,we conduct a case study and comparative analysis.Results reveal the effectiveness of the proposed model in solving agricultural investment project selection problems with uncertain and inconsistent decision information.
基金supported by“Undergraduate Innovation and Entrepreneurship Training Program”at Harbin Institute of Technology。
文摘Complex plasma fluctuation processes have been extensively studied in many aspects,especially lattice waves in strongly coupled plasma crystals,which are of great significance for understanding fundamental physical phenomena.A challenge of experimental investigations in two-dimensional strongly coupled complex plasma crystals is to keep the main body and foreign particles of different masses on the same horizontal plane.To solve the problem,we have proposed a potential well formed by two negatively biased grids to bind the negatively charged particles in a two-dimensional(2D)plane,thus achieving a 2D plasma crystal in the microgravity environment.The study of such phenomena in complex plasma crystals under microgravity environment then becomes possible.In this paper,we focus on the continuum spectrum,including both phonon and optic branches of the impurity mode in a 2D system in microgravity environments.The results show the dispersion relation of the longitudinal and transverse impurity oscillation modes and their properties.Considering the macroscopic visibility of complex mesoscopic particle lattices,theoretical and experimental studies on this kind of complex plasma systems will help us further understand the physical nature of a wide range of condensed matters.
基金Central University Basic Research Fund of China,Grant/Award Number:FWNX04Ningxia Natural Science Foundation,Grant/Award Number:2021AAC03203National Natural Science Foundation of China,Grant/Award Number:61662001。
文摘Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.