期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nonlinear dynamic response analysis of supercavitating vehicles 被引量:1
1
作者 麻震宇 林明东 +1 位作者 胡凡 张为华 《Journal of Central South University》 SCIE EI CAS 2012年第9期2502-2513,共12页
A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing... A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle. 展开更多
关键词 supercavitating vehicle shell element of relative degrees of freedom nonlinear finite element dynamic response
下载PDF
NUMERICAL ANALYSIS OF BIFURCATION BUCKLING FOR ROTATIONALLY PERIODIC STRUCTURES UNDER ROTATIONALLY PERIODIC LOADS
2
作者 李建中 刘应华 +1 位作者 岑章志 徐秉业 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1998年第1期53-64,共12页
By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-o... By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-of-freedom (DOFs) of joint nodes between the neighboring substructures are classified as master and slave ones. The stress and strain conditions of the whole structure are obtained by solving the elastic static equations for only one substructure by introducing the displacement constraints between master and slave DOFs. The complex constraint method is used to get the bifurcation buckling load and mode for the whole rotationally periodic structure by solving the eigenvalue problem for only one substructure without introducing any additional approximation. The finite element (FE) formulation of shell element of relative degrees of freedom (SERDF) in the buckling analysis is derived. Different measures of tackling internal degrees of freedom for different kinds of buckling problems and different stages of numerical analysis are presented. Some numerical examples are given to illustrate the high efficiency and validity of this method. 展开更多
关键词 rotationally periodic structure bifurcation buckling complex constraint method SUBSTRUCTURE shell element of relative degrees of freedom(SERDF)
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部