期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Reference satellite selection method for GNSS high-precision relative positioning
1
作者 Xiao Gao Wujiao Dai +1 位作者 Zhiyong Song Changsheng Cai 《Geodesy and Geodynamics》 2017年第2期125-129,共5页
Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satelli... Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning. 展开更多
关键词 Global Navigation Satellite System (GNSS)relative positioning Reference satellite Positional dilution of precision (PDOP)Condition number
下载PDF
Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis
2
作者 朱伟 单蕊 《Applied Geophysics》 SCIE CSCD 2016年第2期375-381,420,共8页
Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When ... Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision. 展开更多
关键词 digital rock transmitted ultrasonic wave simulation VELOCITY relative precision
下载PDF
Quality analysis of crustal tilt and strain observations in China's earthquakes in 2014
3
作者 Chen Zhiyao Lǖ Pinji Tang Lei 《Geodesy and Geodynamics》 2015年第6期467-481,共15页
This work analyzes the quality of crustal tilt and strain observations during 2014, which were acquired from 269 sets of ground tiltmeters and 212 sets of strainmeters. In terms of data quality, the water tube tiltmet... This work analyzes the quality of crustal tilt and strain observations during 2014, which were acquired from 269 sets of ground tiltmeters and 212 sets of strainmeters. In terms of data quality, the water tube tiltmeters presented the highest rate of excellent quality,approximately 91%, and the pendulum tiltmeters and ground strainmeters yielded rates of81% and 78%, respectively. This means that a total of 380 sets of instruments produced high-quality observational data suitable for scientific investigations and analyses. 展开更多
关键词 Crustal tilt observation Crustal strain observation Observation quality M2tidal wave amplitude factor Mean error in M2tidal wave amplitude relative mean error in M2tidal wave amplitude relative noise level Self-calibration internal precision
下载PDF
Integrating BDS and GPS for precise relative orbit determination of LEO formation flying 被引量:7
4
作者 Bin YI Defeng GU +1 位作者 Xiao CHANG Kai SHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期2013-2022,共10页
Low-Earth-Orbit(LEO) formation-flying satellites have been widely applied in many kinds of space geodesy. Precise Relative Orbit Determination(PROD) is an essential prerequisite for the LEO formation-flying satell... Low-Earth-Orbit(LEO) formation-flying satellites have been widely applied in many kinds of space geodesy. Precise Relative Orbit Determination(PROD) is an essential prerequisite for the LEO formation-flying satellites to complete their mission in space. The contribution of the BeiDou Navigation Satellite System(BDS) to the accuracy and reliability of PROD of LEO formation-flying satellites based on a Global Positioning System(GPS) is studied using a simulation method. Firstly, when BDS is added to GPS, the mean number of visible satellites increases from9.71 to 21.58. Secondly, the results show that the 3-Dimensional(3 D) accuracy of PROD, based on BDS-only, GPS-only and BDS + GPS, is 0.74 mm, 0.66 mm and 0.52 mm, respectively. When BDS co-works with GPS, the accuracy increases by 29.73%. Geostationary-Earth-Orbit(GEO) satellites and Inclined Geosynchronous-Orbit(IGSO) satellites are only distributed over the Asia-Pacific region; however, they could provide a global improvement to PROD. The difference in PROD results between the Asia-Pacific region and the non-Asia-Pacific region is not apparent. Furthermore, the value of the Ambiguity Dilution Of Precision(ADOP), based on BDS + GPS, decreases by 7.50% and 8.26%, respectively, compared with BDS-only and GPS-only. Finally, if the relative position between satellites is only a few kilometres, the effect of ephemeris errors on PROD could be ignored. However, for a several-hundred-kilometre separation of the LEO satellites, the SingleDifference(SD) ephemeris errors of GEO satellites would be on the order of centimetres. The experimental results show that when IGSO satellites and Medium-Earth-Orbit(MEO) satellites co-work with GEO satellites, the accuracy decreases by 17.02%. 展开更多
关键词 Ambiguity Dilution Of precision BeiDou Navigation Satellite System Geostationary-Earth-Orbit Global Positioning System LEO formation flying Precise relative Orbit Determination
原文传递
Basic performance of BeiDou-2 navigation satellite system used in LEO satellites precise orbit determination 被引量:9
5
作者 Liu Junhong Gu Defeng +3 位作者 Ju Bing Yao Jing Duan Xiaojun Yi Dongyun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1251-1258,共8页
The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulat... The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination(POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional(3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about30 cm. As for the precise relative orbit determination(PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit(GEO) satellites is illustrated for POD. 展开更多
关键词 BeiDou-2 Geostationary earth orbit satellites Global positioning system Low earth orbit satellites Precise orbit determination Precise relative orbit determination
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部