The genetic distances among 18 cytoplasmic male sterile lines and 11 restorer lines were analyzed with molecular markers derived from yield-related functional genes. The correlation between parental genetic distance a...The genetic distances among 18 cytoplasmic male sterile lines and 11 restorer lines were analyzed with molecular markers derived from yield-related functional genes. The correlation between parental genetic distance and heterosis was investigated by analyzing the performance of 47 combinations. The results showed that the genetic distance was significantly correlated with yield heterosis (r=0.29^*), but not significantly correlated with heterosis for other traits, such as number of effective panicles per plant, seed setting rate, 1000-grain weight, number of grains per panicle and theoretical yield. However, the correlation coefficient was so small that the parental genetic distance could not to be used to predict heterosis.展开更多
Despite the great success achieved by the exploitation of heterosis in rice,the genetic basis of heterosis is still not well understood.We adopted an advanced-backcross breeding strategy to dissect the genetic basis o...Despite the great success achieved by the exploitation of heterosis in rice,the genetic basis of heterosis is still not well understood.We adopted an advanced-backcross breeding strategy to dissect the genetic basis of heterosis for yield and eight related traits.Four testcross(TC) populations with 228 testcross F1 combinations were developed by crossing57 introgression lines with four types of widely used male sterile lines using a North Carolina II mating design.Analysis of variance indicated that the effects of testcross F1 combinations and their parents were significant or highly significant for most of the traits in both years,and all interaction effects with year were significant for most of the traits.Positive midparent heterosis(HMP) was observed for most traits in the four TC populations in the two years.The relative HMPlevels for most traits varied from highly negative to highly positive.Sixty-two dominant-effect QTL were identified for HMPof the nine traits in the four TC populations in the two years.Of these,22 QTL were also identified for the performance of testcross F1.Most dominant-effect QTL could individually explain more than 10% of the phenotypic variation.Four QTL clusters were observed including the region surrounding the RM9–RM297 region on chromosome 1,the RM110–RM279–RM8–RM5699–RM452 region on chromosome 2,the RM5463 locus on chromosome 6 and the RM1146–RM147 region on chromosome 10.The identified QTL for heterosis provide valuable information for dissecting the genetic basis of heterosis.展开更多
Currently the project'Development and commercia application of FCC catalyst for boosting gasoline yield'jointly undertaken by the SINOPEC Research Institute of Petroleum Processing(RIPP),the SINOPEC Yanshan Br...Currently the project'Development and commercia application of FCC catalyst for boosting gasoline yield'jointly undertaken by the SINOPEC Research Institute of Petroleum Processing(RIPP),the SINOPEC Yanshan Branch Co.and the Branch of SINOPEC Catalyst Company has passed the appraisal.The catalyst aimed at boosting展开更多
To provide a theoretical basis for further improvement of Brassica napus yield, additive dominance with additive - by - additive epistatic effects ( ADAA) genetic model and a 6 X 8 partial dial- lel cross des...To provide a theoretical basis for further improvement of Brassica napus yield, additive dominance with additive - by - additive epistatic effects ( ADAA) genetic model and a 6 X 8 partial dial- lel cross design were used to analyze the genetic effects and correlations of five yield related traits of 14 excellent Brassica napus parental lines and their 46 and F2 populations. The results showed that silique density (SD) , siliques per plant (SPP) , seeds per silique (SPS) and thousand - seed weight (TSW) exhibited not only additive and dominant effects, but also significant epistatic effects. The dominant effects of all five yield - related traits were obviously greater than their additive effects and epistatic effects. Yield per plant (YPP) showed significant genetic correlation with SD, SPP and SPS, and the main component of the genetic correlation was the dominance correlation. SPP and SPS both showed a significant negative correlation with TSW. The SD of rapeseed was genetically correlated with all three components of yield to a certain extent, and there were different components of genetic effects positively correlated with the three yield components, indicating that SD is a potential trait to reconcile the conflict between TSW and SPP as well as SPS.展开更多
Research on root morphological traits of dry-raised seedlings (D-RS) at different growth stages of rice have so far attracted less attention. In this study, using mid-season indica hy-
Knowledge of the factors influencing nutrient-limited subtropical maize yield and subsequent prediction is crucial for effective nutrientmanagement,maximizing profitability,ensuring food security,and promoting environ...Knowledge of the factors influencing nutrient-limited subtropical maize yield and subsequent prediction is crucial for effective nutrientmanagement,maximizing profitability,ensuring food security,and promoting environmental sustainability.Weanalyzed data fromnutrient omission plot trials(NOPTs)conducted in 324 farmers'fields across ten agroecological zones(AEZs)in the Eastern Indo-Gangetic Plains(EIGP)of Bangladesh to explain maize yield variability and identify variables controlling nutrient-limited yields.An additive main effect and multiplicative interaction(AMMI)model was used to explain maize yield variability with nutrient addition.Interpretable machine learning(ML)algorithms in automatic machine learning(AutoML)frameworks were subsequently used to predict attainable yield relative nutrient-limited yield(RY)and to rank variables that control RY.The stack-ensemble model was identified as the best-performing model for predicting RYs of N,P,and Zn.In contrast,deep learning outperformed all base learners for predicting RYK.The best model's square errors(RMSEs)were 0.122,0.105,0.123,and 0.104 for RY_(N),RY_(P),RY_(K),and RY_(Zn),respectively.The permutation-based feature importance technique identified soil pH as the most critical variable controlling RY_(N)and RY_(P).The RY_(K)showed lower in the eastern longitudinal direction.Soil N and Zn were associated with RYZn.The predicted median RY of N,P,K,and Zn,representing average soil fertility,was 0.51,0.84,0.87,and 0.97,accounting for 44,54,54,and 48%upland dry season crop area of Bangladesh,respectively.Efforts are needed to update databases cataloging variability in land type inundation classes,soil characteristics,and INS and combine them with farmers'crop management information to develop more precise nutrient guidelines for maize in the EIGP.展开更多
Crop yields are affected by climate change and technological advancement.Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure susta...Crop yields are affected by climate change and technological advancement.Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change.In this study,daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010,detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010,and results using an Agro-Ecological Zones(AEZ) model,are used to explore the attribution of maize(Zea mays L.) yield change to climate change and technological advancement.In the AEZ model,the climatic potential productivity is examined through three step-by-step levels:photosynthetic potential productivity,photosynthetic thermal potential productivity,and climatic potential productivity.The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated.Combined with the observations of maize,the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated.The results show that,from 1961 to 2010,climate change had a significant adverse impact on the climatic potential productivity of maize in China.Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity.However,changes in precipitation had only a small effect.The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years,which was opposite to the decreasing trends of climatic potential productivity.This suggests that technological advancement has offset the negative effects of climate change on maize yield.Technological advancement contributed to maize yield increases by 99.6%-141.6%,while climate change contribution was from-41.4%to 0.4%.In particular,the actual maize yields in Shandong,Henan,Jilin,and Inner Mongolia increased by 98.4,90.4,98.7,and 121.5 kg hm^(-2) yr^(-1) over the past 30 years,respectively.Correspondingly,the maize yields affected by technological advancement increased by 113.7,97.9,111.5,and 124.8 kg hm^(-2) yr^(-1),respectively.On the contrary,maize yields reduced markedly under climate change,with an average reduction of-9.0 kg hm^(-2) yr^(-1).Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.展开更多
Wheat(Triticum aestivum L.)is a staple food crop consumed by more than 30%of world population.Nitrogen(N)fertilizer has been applied broadly in agriculture practice to improve wheat yield to meet the growing demands f...Wheat(Triticum aestivum L.)is a staple food crop consumed by more than 30%of world population.Nitrogen(N)fertilizer has been applied broadly in agriculture practice to improve wheat yield to meet the growing demands for food production.However,undue N fertilizer application and the low N use efficiency(NUE)of modern wheat varieties are aggravating environmental pollution and ecological deterioration.Under nitrogen-limiting conditions,the rice(Oryza sativa)abnormal cytokinin response1 repressor1(are1)mutant exhibits increased NUE,delayed senescence and consequently,increased grain yield.However,the function of ARE1 ortholog in wheat remains unknown.Here,we isolated and characterized three TaARE1 homoeologs from the elite Chinese winter wheat cultivar ZhengMai 7698.We then used CRISPR/Cas9-mediated targeted mutagenesis to generate a series of transgene-free mutant lines either with partial or triple-null taare1 alleles.All transgene-free mutant lines showed enhanced tolerance to N starvation,and showed delayed senescence and increased grain yield in field conditions.In particular,the AABBdd and aabbDD mutant lines exhibited delayed senescence and significantly increased grain yield without growth defects compared to the wild-type control.Together,our results underscore the potential to manipulate ARE1 orthologs through gene editing for breeding of high-yield wheat as well as other cereal crops with improved NUE.展开更多
Relative yields were measured in the 40−130 MeV bremsstrahlung induced reactions of ^(59)Co.The experiments were performed with the beam from the electron linear accelerator LINAC-200 using the activation and off-line...Relative yields were measured in the 40−130 MeV bremsstrahlung induced reactions of ^(59)Co.The experiments were performed with the beam from the electron linear accelerator LINAC-200 using the activation and off-lineγ-ray spectrometric techniques.The bremsstrahlung photon flux was calculated with the Geant4 program.The cross sections were calculated by using the computer code TALYS-1.96 with different models and were found to be in good agreement with the experimental data.展开更多
Aims Arbuscular mycorrhizal fungi can have a substantial effect on the water and nutrient uptake by plants and the competition between plants in harsh environments where resource availability comes in pulses.In this s...Aims Arbuscular mycorrhizal fungi can have a substantial effect on the water and nutrient uptake by plants and the competition between plants in harsh environments where resource availability comes in pulses.In this study we focus on interspecific competition between Acaia etbaica and Boswellia papyrifera that have distinctive resource acquisition strategies.We compared the extent of interspecific competition with that of intraspecific competition.Methods In a greenhouse study we examined the influence of Arbuscular Mycorrhiza(AM)and pulsed water availability on competitive interactions between seedlings of the rapidly growing species A.etbaica and the slowly growing species B.papyrifera.A factorial experimental design was used.The factors were AM,two water levels and five species combinations Important Findings Seedlings of both species benefitted from AM when grown alone,and the positive growth response to pulsed water availability in B.papyrifera seedlings was in contrast with the negative growth response for A.etbaica seedlings.AM also affected the competitive performance of both species.B.papyrifera was not affected by intraspecific competition,whereas A.etbaica was negatively affected compared to the seedlings grown alone.This effect was stronger in the presence of AM.In interspecific competition,A.etbaica outcompeted B.papyrifera.Mycorrhiza and pulsed water availability did not affect the outcome of interspecific competition,and the aggressivity index of A.etbaica remained unchanged.The extent to which AM influences plant competition in a droughtstressed environment may depend on belowground functional traits of the species.AM and pulsed water availability could modify the balance between intraspecific and interspecific competition.By affecting the balance between intraspecific and interspecific competition,both factors could impact the establishment and survival of seedlings.展开更多
Replacement of the methylene group at the C-8 position with an extended electronic conjugation is a new promising method to develop red-shifted coelenterazine derivatives. In this paper, we have described an oxygen-co...Replacement of the methylene group at the C-8 position with an extended electronic conjugation is a new promising method to develop red-shifted coelenterazine derivatives. In this paper, we have described an oxygen-containing coelenterazine derivative with a significant red-shifted(63 nm)bioluminescence signal maximum relative to coelenterazine 400a(Deep Blue C^(TM), 1). In cell imaging, the sulfur-containing coelenterazine derivative displayed a significantly(1.77 ± 0.09;P≤0.01) higher luminescence signal compared to coelenterazine 400 a and the oxygen-containing coelenterazine derivative exhibited a slightly(0.74 ± 0.08; P≤0.05) lower luminescence signal. It is beneficial to understand further the underlying mechanisms of bioluminescence.展开更多
基金supported by the National High Technology Research and Development of China(Grant No.2009AA101101)the China National Jumping Plan of Agricultural Technology and Science the Tackling Key Subject of Rice Breeding in Sichuan Province,China(Grant No.YZGG2006-1)the Youth Foundation of Sichuan Academy of Agricultural Sciences,China(Grant No.2008QNJJ)
文摘The genetic distances among 18 cytoplasmic male sterile lines and 11 restorer lines were analyzed with molecular markers derived from yield-related functional genes. The correlation between parental genetic distance and heterosis was investigated by analyzing the performance of 47 combinations. The results showed that the genetic distance was significantly correlated with yield heterosis (r=0.29^*), but not significantly correlated with heterosis for other traits, such as number of effective panicles per plant, seed setting rate, 1000-grain weight, number of grains per panicle and theoretical yield. However, the correlation coefficient was so small that the parental genetic distance could not to be used to predict heterosis.
基金funded by the National High Technology Research and Development Program of China (No.2014AA10A604)the Shenzhen Municipal Peacock Plan for introducing high-level overseas talents
文摘Despite the great success achieved by the exploitation of heterosis in rice,the genetic basis of heterosis is still not well understood.We adopted an advanced-backcross breeding strategy to dissect the genetic basis of heterosis for yield and eight related traits.Four testcross(TC) populations with 228 testcross F1 combinations were developed by crossing57 introgression lines with four types of widely used male sterile lines using a North Carolina II mating design.Analysis of variance indicated that the effects of testcross F1 combinations and their parents were significant or highly significant for most of the traits in both years,and all interaction effects with year were significant for most of the traits.Positive midparent heterosis(HMP) was observed for most traits in the four TC populations in the two years.The relative HMPlevels for most traits varied from highly negative to highly positive.Sixty-two dominant-effect QTL were identified for HMPof the nine traits in the four TC populations in the two years.Of these,22 QTL were also identified for the performance of testcross F1.Most dominant-effect QTL could individually explain more than 10% of the phenotypic variation.Four QTL clusters were observed including the region surrounding the RM9–RM297 region on chromosome 1,the RM110–RM279–RM8–RM5699–RM452 region on chromosome 2,the RM5463 locus on chromosome 6 and the RM1146–RM147 region on chromosome 10.The identified QTL for heterosis provide valuable information for dissecting the genetic basis of heterosis.
文摘Currently the project'Development and commercia application of FCC catalyst for boosting gasoline yield'jointly undertaken by the SINOPEC Research Institute of Petroleum Processing(RIPP),the SINOPEC Yanshan Branch Co.and the Branch of SINOPEC Catalyst Company has passed the appraisal.The catalyst aimed at boosting
基金This research was supported by the National Basic Research Program of China ( 973 Program, 2011CB109302);the National High - Tech R&D Pro-gram of China (863 Program, 2011AA10A104, 2012AA101107) ; Natural Science Foundation of Hu-bei Province (2015CFA103) ; Hubei Agricultural Science and Technology Innovation Center.
文摘To provide a theoretical basis for further improvement of Brassica napus yield, additive dominance with additive - by - additive epistatic effects ( ADAA) genetic model and a 6 X 8 partial dial- lel cross design were used to analyze the genetic effects and correlations of five yield related traits of 14 excellent Brassica napus parental lines and their 46 and F2 populations. The results showed that silique density (SD) , siliques per plant (SPP) , seeds per silique (SPS) and thousand - seed weight (TSW) exhibited not only additive and dominant effects, but also significant epistatic effects. The dominant effects of all five yield - related traits were obviously greater than their additive effects and epistatic effects. Yield per plant (YPP) showed significant genetic correlation with SD, SPP and SPS, and the main component of the genetic correlation was the dominance correlation. SPP and SPS both showed a significant negative correlation with TSW. The SD of rapeseed was genetically correlated with all three components of yield to a certain extent, and there were different components of genetic effects positively correlated with the three yield components, indicating that SD is a potential trait to reconcile the conflict between TSW and SPP as well as SPS.
文摘Research on root morphological traits of dry-raised seedlings (D-RS) at different growth stages of rice have so far attracted less attention. In this study, using mid-season indica hy-
文摘Knowledge of the factors influencing nutrient-limited subtropical maize yield and subsequent prediction is crucial for effective nutrientmanagement,maximizing profitability,ensuring food security,and promoting environmental sustainability.Weanalyzed data fromnutrient omission plot trials(NOPTs)conducted in 324 farmers'fields across ten agroecological zones(AEZs)in the Eastern Indo-Gangetic Plains(EIGP)of Bangladesh to explain maize yield variability and identify variables controlling nutrient-limited yields.An additive main effect and multiplicative interaction(AMMI)model was used to explain maize yield variability with nutrient addition.Interpretable machine learning(ML)algorithms in automatic machine learning(AutoML)frameworks were subsequently used to predict attainable yield relative nutrient-limited yield(RY)and to rank variables that control RY.The stack-ensemble model was identified as the best-performing model for predicting RYs of N,P,and Zn.In contrast,deep learning outperformed all base learners for predicting RYK.The best model's square errors(RMSEs)were 0.122,0.105,0.123,and 0.104 for RY_(N),RY_(P),RY_(K),and RY_(Zn),respectively.The permutation-based feature importance technique identified soil pH as the most critical variable controlling RY_(N)and RY_(P).The RY_(K)showed lower in the eastern longitudinal direction.Soil N and Zn were associated with RYZn.The predicted median RY of N,P,K,and Zn,representing average soil fertility,was 0.51,0.84,0.87,and 0.97,accounting for 44,54,54,and 48%upland dry season crop area of Bangladesh,respectively.Efforts are needed to update databases cataloging variability in land type inundation classes,soil characteristics,and INS and combine them with farmers'crop management information to develop more precise nutrient guidelines for maize in the EIGP.
基金Supported by the National Natural Science Foundation of China(31371530)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106020)China Meteorological Administration Special Climate Change Research Fund(CCSF201346)
文摘Crop yields are affected by climate change and technological advancement.Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change.In this study,daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010,detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010,and results using an Agro-Ecological Zones(AEZ) model,are used to explore the attribution of maize(Zea mays L.) yield change to climate change and technological advancement.In the AEZ model,the climatic potential productivity is examined through three step-by-step levels:photosynthetic potential productivity,photosynthetic thermal potential productivity,and climatic potential productivity.The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated.Combined with the observations of maize,the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated.The results show that,from 1961 to 2010,climate change had a significant adverse impact on the climatic potential productivity of maize in China.Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity.However,changes in precipitation had only a small effect.The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years,which was opposite to the decreasing trends of climatic potential productivity.This suggests that technological advancement has offset the negative effects of climate change on maize yield.Technological advancement contributed to maize yield increases by 99.6%-141.6%,while climate change contribution was from-41.4%to 0.4%.In particular,the actual maize yields in Shandong,Henan,Jilin,and Inner Mongolia increased by 98.4,90.4,98.7,and 121.5 kg hm^(-2) yr^(-1) over the past 30 years,respectively.Correspondingly,the maize yields affected by technological advancement increased by 113.7,97.9,111.5,and 124.8 kg hm^(-2) yr^(-1),respectively.On the contrary,maize yields reduced markedly under climate change,with an average reduction of-9.0 kg hm^(-2) yr^(-1).Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.
基金funded by National Key Research and Development Program of China(2020YFE0202300)the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202109)+1 种基金Fundamental Research Funds for Central Non-Profit of Institute of Crop Sciences,Chinese Academy of Agricultural Sciences(S2021ZD03)National Engineering Laboratory of Crop Molecular Breeding。
文摘Wheat(Triticum aestivum L.)is a staple food crop consumed by more than 30%of world population.Nitrogen(N)fertilizer has been applied broadly in agriculture practice to improve wheat yield to meet the growing demands for food production.However,undue N fertilizer application and the low N use efficiency(NUE)of modern wheat varieties are aggravating environmental pollution and ecological deterioration.Under nitrogen-limiting conditions,the rice(Oryza sativa)abnormal cytokinin response1 repressor1(are1)mutant exhibits increased NUE,delayed senescence and consequently,increased grain yield.However,the function of ARE1 ortholog in wheat remains unknown.Here,we isolated and characterized three TaARE1 homoeologs from the elite Chinese winter wheat cultivar ZhengMai 7698.We then used CRISPR/Cas9-mediated targeted mutagenesis to generate a series of transgene-free mutant lines either with partial or triple-null taare1 alleles.All transgene-free mutant lines showed enhanced tolerance to N starvation,and showed delayed senescence and increased grain yield in field conditions.In particular,the AABBdd and aabbDD mutant lines exhibited delayed senescence and significantly increased grain yield without growth defects compared to the wild-type control.Together,our results underscore the potential to manipulate ARE1 orthologs through gene editing for breeding of high-yield wheat as well as other cereal crops with improved NUE.
基金Supported in part by the Ministry of Science and Higher Education of the Russian Federation (075-15-2021-1360)by the project of the National Center for Physics and Mathematics (NCPM)No.6“Nuclear and Radiation Physics,”direction 6.5.1。
文摘Relative yields were measured in the 40−130 MeV bremsstrahlung induced reactions of ^(59)Co.The experiments were performed with the beam from the electron linear accelerator LINAC-200 using the activation and off-lineγ-ray spectrometric techniques.The bremsstrahlung photon flux was calculated with the Geant4 program.The cross sections were calculated by using the computer code TALYS-1.96 with different models and were found to be in good agreement with the experimental data.
基金Netherlands Fellowship Programme(NUFFIC)and NWOWOTRO(Netherlands Organization for Scientific Research-Science for Global Development)through the integrated program FRAME(Frankincense,myrrh and gum arabic:sustainable use of dry woodlands resources in Ethiopia,grant number W01.65.220.00)Mekelle University,Wageningen University,research grants from NORAD II project and IFS(International Foundation for Science,grant number D-4362-1)to E.B.
文摘Aims Arbuscular mycorrhizal fungi can have a substantial effect on the water and nutrient uptake by plants and the competition between plants in harsh environments where resource availability comes in pulses.In this study we focus on interspecific competition between Acaia etbaica and Boswellia papyrifera that have distinctive resource acquisition strategies.We compared the extent of interspecific competition with that of intraspecific competition.Methods In a greenhouse study we examined the influence of Arbuscular Mycorrhiza(AM)and pulsed water availability on competitive interactions between seedlings of the rapidly growing species A.etbaica and the slowly growing species B.papyrifera.A factorial experimental design was used.The factors were AM,two water levels and five species combinations Important Findings Seedlings of both species benefitted from AM when grown alone,and the positive growth response to pulsed water availability in B.papyrifera seedlings was in contrast with the negative growth response for A.etbaica seedlings.AM also affected the competitive performance of both species.B.papyrifera was not affected by intraspecific competition,whereas A.etbaica was negatively affected compared to the seedlings grown alone.This effect was stronger in the presence of AM.In interspecific competition,A.etbaica outcompeted B.papyrifera.Mycorrhiza and pulsed water availability did not affect the outcome of interspecific competition,and the aggressivity index of A.etbaica remained unchanged.The extent to which AM influences plant competition in a droughtstressed environment may depend on belowground functional traits of the species.AM and pulsed water availability could modify the balance between intraspecific and interspecific competition.By affecting the balance between intraspecific and interspecific competition,both factors could impact the establishment and survival of seedlings.
基金supported by grants from the National Program on Key Basic Research Project (No. 2013CB734000)the National Natural Science Foundation of China (No. 81370085)+1 种基金the Major Project of Science and Technology of Shandong Province (No. 2015ZDJS04001)the Fundamental Research Funds of Shandong University (No. 2014JC008)
文摘Replacement of the methylene group at the C-8 position with an extended electronic conjugation is a new promising method to develop red-shifted coelenterazine derivatives. In this paper, we have described an oxygen-containing coelenterazine derivative with a significant red-shifted(63 nm)bioluminescence signal maximum relative to coelenterazine 400a(Deep Blue C^(TM), 1). In cell imaging, the sulfur-containing coelenterazine derivative displayed a significantly(1.77 ± 0.09;P≤0.01) higher luminescence signal compared to coelenterazine 400 a and the oxygen-containing coelenterazine derivative exhibited a slightly(0.74 ± 0.08; P≤0.05) lower luminescence signal. It is beneficial to understand further the underlying mechanisms of bioluminescence.