Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re...Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.展开更多
Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised o...Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.展开更多
By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed...By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed that the yearly average relative humidity in Urumqi was 57.5%.The relative humidity in winter was 77.5% which was the biggest all the year round,and the relative humidity in summer was 41.2% which was the smallest.The relative humidity in spring,summer,autumn,winter and the yearly relative humidity all displayed the increase trend.The yearly mean relative humidity had the periods of mainly 2,3-4 and quasi-7 years.The periodic oscillation of quasi-7 years was the strongest.展开更多
Effects of pressure and temperature in the chamber during vacuum drying on the relative humidity and evaporation of wood surface were investigated by using the vacuum chamber. The setting temperature during vacuum dry...Effects of pressure and temperature in the chamber during vacuum drying on the relative humidity and evaporation of wood surface were investigated by using the vacuum chamber. The setting temperature during vacuum drying included dry-bulb temperature ta, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the cooling water in the condenser. Results indicated that relative humidity during vacuum drying was affected by the dry-bulb temperature td, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the water in the condenser. Relative humidity of wood decreased with the increase in temperature at the given temperature of the water in the condenser. The relative humidity was affected slightly by pressure in the vacuum chamber pA, and it decreased from 70% to 65% with pA increased from 50 kPa to 101 kPa. Moreover, there was nearly no evaporation under the vacuum without external heating.展开更多
The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringie...The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.展开更多
Nitrous acid, HNO2, is an important precursor of OH radicals in the troposphere. Measurements of HNO2 and NO2, using differential optical absorption spectroscopy (DOAS), were performed in Shanghai, China for a perio...Nitrous acid, HNO2, is an important precursor of OH radicals in the troposphere. Measurements of HNO2 and NO2, using differential optical absorption spectroscopy (DOAS), were performed in Shanghai, China for a period from October 22, 2004 to January 4, 2005. The mean (and median) hourly concentrations of HNO2 and NO2 during this period were 1.1 (0.7) ppb and 24 (21.4) ppb respectively. A correlation between HNO2/NO2 and PM10 mass concentrations was obtained. This correlation suggests that significant heterogeneous chemical production of HNO2 may occur through NO2 reactions on aerosol surfaces. This hypothesis was further supported by detailed analysis of selected pollution episodes in this study. At the same time, the water dependence of HNO2 formation was studied by analysis of relative humidity (RH). It showed that the maximum HNO2/NO2 ratio was increased along with RH below 70% and inhibited at RH〉70%.展开更多
Farm animals are sources of meat, milk and eggs for the humans, and animal health ensures the quality and security of these agricultural and sideline products. The animal raising conditions in livestock stations and p...Farm animals are sources of meat, milk and eggs for the humans, and animal health ensures the quality and security of these agricultural and sideline products. The animal raising conditions in livestock stations and poultry houses play vital roles in both animal health and production. One of the major factors affecting raising conditions, relative humidity, has not received much attention even though it is important for animal husbandry. In this review, we summarize the impacts of relative humidity on animal health and welfare to draw attention for its importance in the improvement of animal raising conditions in the future.展开更多
The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are tw...The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are two main factors of thermal environmental comfort and have a critical impact on the urban environmental quality of human settlements.We measured the 2-m height air temperature and relative humidity at the Beijing Olympic Park and a nearby building roof for more than 1 year to elucidate seasonal variations in air temperature and relative humidity,as well as to investigate the outdoor thermal comfort.The results showed that the lawn of the park could,on average,reduce the air temperature by(0.80±0.19)℃,and increase the relative humidity by(5.24±2.91)% relative to the values measured at the building roof during daytime.During the nighttime,the lawn of the park reduced the air temperature by(2.64±0.64)℃ and increased the relative humidity by(10.77±5.20)%.The park was cooler and more humid than surrounding building area,especially in night period(more pronounced cooling with 1.84℃).Additionally,the lawn of the park could improve outdoor thermal comfort through its cooling and humidifying effects.The level of thermal comfort in the park was higher than that around the building roof for a total of 11 days annually in which it was above one or more thermal comfort levels(average reduced human comfort index of 0.92)except during the winter.展开更多
Forest fire is a serious disaster all over the world. The Fire Weather Index (FWI) System can be used in ap- plied forestry as a tool to investigate and manage all types of fire. Relative humidity (RH) is a very impor...Forest fire is a serious disaster all over the world. The Fire Weather Index (FWI) System can be used in ap- plied forestry as a tool to investigate and manage all types of fire. Relative humidity (RH) is a very important parameter to calculate FWI. However, RH interpolated from meteorological data may not be able to provide precise and confident values for areas between far separated stations. The principal objective of this study is to provide high-resolution RH for FWI using MODIS data. The precipitable water vapor (PW) can be retrieved from MODIS using split window tech- niques. Four-year-time-series (2000-2003) of 8-day mean PW and specific humidity (Q) of Peninsular Malaysia were analyzed and the statistic expression between PW and Q was developed. The root-mean-square-error (RMSE) of Q es- timated by PW is generally less than 0.0004 and the correlation coefficient is 0.90. Based on the experiential formula between PW and Q, surface RH can be computed with combination of auxiliary data such as DEM and air temperature (Ta). The mean absolute errors of the estimated RH in Peninsular Malaysia are less than 5% compared to the measured RH and the correlation coefficient is 0.8219. It is proven to be a simple and feasible model to compute high-resolution RH using remote sensing data.展开更多
The humidity effects on the benzene decomposition process were investigated by the dielectric barrier discharge(DBD) plasma reactor.The results showed that the water vapor played an important role in the benzene oxi...The humidity effects on the benzene decomposition process were investigated by the dielectric barrier discharge(DBD) plasma reactor.The results showed that the water vapor played an important role in the benzene oxidation process.It was found that there was an optimum humidity value for the benzene removal efficiency,and at around 60% relative humidity(RH),the optimum benzene removal efficiency was achieved.At a SIE of 378 J/L,the removal efficiency was 66% at 0% RH,while the removal efficiency reached 75.3% at 60% RH and dropped to 69% at 80% RH.Furthermore,the addition of water inhibited the formation of ozone and NO2 remarkably.Both of the concentrations of ozone and NO2 decreased with increasing of the RH at the same specific input energy.At a SIE of 256 J/L,the concentrations of ozone and NO2 were 5.4 mg/L and 1791 ppm under dry conditions,whereas they were only 3.4 mg/L and 1119 ppm at 63.5%RH,respectively.Finally,the outlet gas after benzene degradation was qualitatively analyzed by FT-IR and GC-MS to determine possible intermediate byproducts.The results suggested that the byproducts in decomposition of benzene primarily consisted of phenol and substitutions of phenol.Based on these byproducts a benzene degradation mechanism was proposed.展开更多
Recently,the China Meteorological Administration(CMA)released a new Global Atmospheric Reanalysis(CRA-40)dataset for the period 1979−2018.In this study,surface relative humidity(RH)from CRA-40 and other current reanal...Recently,the China Meteorological Administration(CMA)released a new Global Atmospheric Reanalysis(CRA-40)dataset for the period 1979−2018.In this study,surface relative humidity(RH)from CRA-40 and other current reanalyses(e.g.,CFSR,ERA5,ERA-Interim,JRA-55,and MERRA-2)is comprehensively evaluated against homogenized observations over China.The results suggest that most reanalyses overestimate the observations by 15%−30%(absolute difference)over the Tibetan Plateau but underestimate the observations by 5%−10%over most of northern China.The CRA-40 performs relatively well in describing the long-term change and variance seen in the observed surface RH over China.Most of the reanalyses reproduce the observed surface RH climatology and interannual variations well,while few reanalyses can capture the observed long-term RH trends over China.Among these reanalyses,the CFSR does poorly in describing the interannual changes in the observed RH,especially in Southwest China.An empirical orthogonal function(EOF)analysis also suggests that the CRA-40 performs better than other reanalyses to capture the first two leading EOF modes revealed by the observations.The results of this study are expected to improve understanding of the strengths and weaknesses of the current reanalysis products and thus facilitate their application.展开更多
Objective Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impact...Objective Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. Methods This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. Results We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Conclusion Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population.展开更多
The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,an...The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,and the catalysts were characterized. Temperature program desorption (TPD) experiments or toluene and water on the catalysts were carried out. The influence of water vapor on the activity of the catalysts was discussed. Results showed that addition of the water vapor has a significant negative effect on the catalytic activity of the catalysts.The higher the concentration of the Water vapor in feed steam was, the lower the catalytic activity of the copper based catalysts became, which could be mainly ascribed to the competition of water molecules with toluene molecules for adsorption on the catalyst surfaces. TPD experiments showed that the strength of the interaction between water molecules and three catalysts followed the order: CuO/γ-Al2O3〉CuO/γ-Al2O3-Cord〉CuO/Cord. As a consequence of that, the degree of degradation in the catalytic activity of these three catalysts by the water vapor followed the order: CuO/γ-Al2O3〉CuO/y-Al2O3-Cord〉CuO/Cord. However, the negative effect of the water vapor was reversible.展开更多
A novel embedded sensor network records changes in key climatic-environmental variables over a range of altitude in the BaekduDaegan Mountain (BDM) of Gangwon Province in Korea, a protected mountain region with uniq...A novel embedded sensor network records changes in key climatic-environmental variables over a range of altitude in the BaekduDaegan Mountain (BDM) of Gangwon Province in Korea, a protected mountain region with unique biodiversity undergoing climate change research. The investigated area is subdivided into three horizontal north-south study areas. Three variables, temperature (T, °C), relative humidity (RH, %), and light intensity (LI, lumens m-2, or lux, lx), have been continuously measured at hourly intervals from June, 2olo to September, 2011 using HOBO H8 devices at lO fixed study sites. These hourly observations are aggregated to monthly, seasonal and annual mean values, and results are summarized to inaugurate a long-term climate change investigation. A region wide T difference in accordance with altitude, or lapse rate, over the interval is calculated as o.4°C l00 m-1. T lapse rates change seasonally, with winter lapse rates being greater than those of summer. RH is elevated in summer compared to other seasons. LI within forestland is lower during summer and higher during other seasons. The obtained results could closely relate to the vegetation type and structure and the terrain state since data loggers were located in forestland.展开更多
The relationship between autogenous deformation and internal relative humidity(IRH) of high-strength concrete and high-strength expansive concrete were investigated.The experimental results indicate that,there exist...The relationship between autogenous deformation and internal relative humidity(IRH) of high-strength concrete and high-strength expansive concrete were investigated.The experimental results indicate that,there exists a good linear relationship between autogenous shrinkage and IRH of high-strength concrete but a nonlinear relationship between autogenous deformation and IRH of high-strength expansive concrete with expansive agent.The new autogenous deformation curve can be obtained by transforming the autogenous deformation data of high-strength expansive concrete,and there exists linear relationship between the autogenous deformation and IRH.The concept of "critical internal relative humidity" was proposed,which is defined as the value of IRH when autogenous deformation is zero,to effectively reflect the autogenous deformation characteristic of expansive concrete.展开更多
The fate of Polycyclic Aromatic Hydrocarbons (PAHs) residing in the atmosphere has received enormous attention in recent years due to their mutagenic and carcinogenic risks on human health. In this context, the stab...The fate of Polycyclic Aromatic Hydrocarbons (PAHs) residing in the atmosphere has received enormous attention in recent years due to their mutagenic and carcinogenic risks on human health. In this context, the stability of pyrene (as a representative PAHs) on quartz, alumina, montmorillonite, kaolinite, humic acid and quartz coated with sorbed humic acid was investigated at controlled relative humidity (RH: i.e. 5% and 30%) without light irradiation in order to detect the presence of catalytic effect of mineral surface on PAHs decomposition. The stability of pyrene was found to depend strongly on the physicochemical properties of the substrates. Quartz showed a strong catalytic effect for the decomposition of pyrene even though it was coated with sorbed humic acid. Pyrene sorbed on montmorillonite and humic acid remained stable during the experimental period (i.e. 3 days). Moisture in the experimental cell also affected the stability of pyrene in particular minerals. Especially, pyrene sorbed on alumina was rapidly decomposed at higher RH. However, there were almost no effect in the case of quartz, kaolinite and humic acid. Depending on the physicochemical properties of aerosols and RH, PAHs associated with minerals in the atmosphere would be decomposed and/or stably reside in the atmosphere.展开更多
In the present study,the effects of relative humidity on filtrating coal-fired fly ash with hydrophobic poly tetra fluoroethylene(PTFE) membranes were investigated.The intergranular force of particulate matter at diff...In the present study,the effects of relative humidity on filtrating coal-fired fly ash with hydrophobic poly tetra fluoroethylene(PTFE) membranes were investigated.The intergranular force of particulate matter at different RH conditions was measured by analyzing the critical angle between particles.Effects of humidity(from 30% to 70%) on filtration pressure drop and membrane fouling conditions were characterized.It was found the membrane showed optimal filtration resistance of 530 Pa at RH of 60% and the gas permeance can be maintained at 1440 m^(3)·m^(-2)·h^(-1)·kPa^(-1).Moreover,to optimize the operation parameters for this filtration system,effects of fly ash concentration,diameter,membrane pore size,and gas velocities were systematically investigated.展开更多
This research indicates that the gradient of internal relative humidity (IRH) decreases rapidly within 7-day curing age in HPC. The amount of water imported by pre-wetted light-weight aggregate can regulate IRH of ...This research indicates that the gradient of internal relative humidity (IRH) decreases rapidly within 7-day curing age in HPC. The amount of water imported by pre-wetted light-weight aggregate can regulate IRH of concrete. By importing a proper amount of water, the process of the decline of IRH can be delayed and the autogenous shrinkage can be reduced. The relationship among the amount of water imported by pre- wetted lightweight aggregate, IRH and AS was established. The result provides a new method of reducing early AS and enhancing early cracking resistance of HPC.展开更多
The multi-fractal ity over China are studied behaviors of relative humid using the multi-fractal de trended fluctuation analysis (DFA) method. Three multi fractal parameters (the spectrum width Aa, the asymmetry Aa...The multi-fractal ity over China are studied behaviors of relative humid using the multi-fractal de trended fluctuation analysis (DFA) method. Three multi fractal parameters (the spectrum width Aa, the asymmetry Aaas, and the long-range correlation exponent a0) of the singularity spectrum are introduced to quantify the multi-fractal behaviors. The results show that multi-frac tality exists in daily humidity records over most stations in China and is mainly due to the broad distribution of the probability density of the sequence values. Strong multi fractal behaviors over some stations in the Yunnan, Guangdong, and Inner Mongolia provinces are obvious. These behaviors are mainly caused by different long range correlations between large and small fluctuations. The asymmetry of the singularity of relative humidity records is weak, except for a small number of stations in the far east and west of China, where the singularity spec trum is left-skewed. Finally, the long-range correlations in North China are stronger than those in South China, which indicates better predictability in North China. By studying the parameters of the multi-fractal spectrum, various data of long-range power law correlations of the relative humidity records are obtained, which may pro vide theoretical support for climate prediction.展开更多
Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and sur...Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions--North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.展开更多
基金supported by the Performance Incentive and Guidance Project for Scientific Research Institutions,China(cstc2022jxjl80028)the General Project of Chongqing Natural Science Foundation,China(cstc2021jcyj-msxmX0747)+2 种基金the Youth Innovation Team Project of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC02)the Jiangjin Experimental Station of National Germplasm Resources Observation,China(NAES025GR05)the Chongqing Technical Innovation and Application Development Special Project,China(CSTB2022T1AD-KPX0008).
文摘Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.
文摘Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.
文摘By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed that the yearly average relative humidity in Urumqi was 57.5%.The relative humidity in winter was 77.5% which was the biggest all the year round,and the relative humidity in summer was 41.2% which was the smallest.The relative humidity in spring,summer,autumn,winter and the yearly relative humidity all displayed the increase trend.The yearly mean relative humidity had the periods of mainly 2,3-4 and quasi-7 years.The periodic oscillation of quasi-7 years was the strongest.
文摘Effects of pressure and temperature in the chamber during vacuum drying on the relative humidity and evaporation of wood surface were investigated by using the vacuum chamber. The setting temperature during vacuum drying included dry-bulb temperature ta, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the cooling water in the condenser. Results indicated that relative humidity during vacuum drying was affected by the dry-bulb temperature td, the wet-bulb temperature tw and the temperature difference between the air in the vacuum chamber and the water in the condenser. Relative humidity of wood decreased with the increase in temperature at the given temperature of the water in the condenser. The relative humidity was affected slightly by pressure in the vacuum chamber pA, and it decreased from 70% to 65% with pA increased from 50 kPa to 101 kPa. Moreover, there was nearly no evaporation under the vacuum without external heating.
基金supported by the National Natural Science Foundation of China (30971727,31171479)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China+4 种基金the Key Laboratory Foundation of Jiangsu Province,China (10KJA210057)the Doctoral Advisor Foundation of Education Department of China(20113250110001)the Natural Science Foundation of Jiangsu Province,China (BK2009324)the New Century Academic Leader Project,Yangzhou University of Chinathe Qing-Lan Project,Jiangsu Provincial Educational Department,China
文摘The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.
基金The National Natural Science Foundation of China (No. 20277006) and the Fudan University Foundation for Young Scientists (No.EXH 6286301)
文摘Nitrous acid, HNO2, is an important precursor of OH radicals in the troposphere. Measurements of HNO2 and NO2, using differential optical absorption spectroscopy (DOAS), were performed in Shanghai, China for a period from October 22, 2004 to January 4, 2005. The mean (and median) hourly concentrations of HNO2 and NO2 during this period were 1.1 (0.7) ppb and 24 (21.4) ppb respectively. A correlation between HNO2/NO2 and PM10 mass concentrations was obtained. This correlation suggests that significant heterogeneous chemical production of HNO2 may occur through NO2 reactions on aerosol surfaces. This hypothesis was further supported by detailed analysis of selected pollution episodes in this study. At the same time, the water dependence of HNO2 formation was studied by analysis of relative humidity (RH). It showed that the maximum HNO2/NO2 ratio was increased along with RH below 70% and inhibited at RH〉70%.
基金provided by the National Key R&D Program of China(2016YFD0500501)the National Science and Technology Support Program of China(2012BAD39B02)the Agricultural Science and Technology Innovation Program,China(ASTIP-IAS07)
文摘Farm animals are sources of meat, milk and eggs for the humans, and animal health ensures the quality and security of these agricultural and sideline products. The animal raising conditions in livestock stations and poultry houses play vital roles in both animal health and production. One of the major factors affecting raising conditions, relative humidity, has not received much attention even though it is important for animal husbandry. In this review, we summarize the impacts of relative humidity on animal health and welfare to draw attention for its importance in the improvement of animal raising conditions in the future.
基金Under the auspices of National Natural Science Foundation of China(No.41871343)Major Project of National Natural Science Foundation of China(No.41590842)Strategic Priority Research Program A of the Chinese Academy of Sciences(No.XDA23100201)
文摘The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands(UHIs).Air temperature and relative humidity are two main factors of thermal environmental comfort and have a critical impact on the urban environmental quality of human settlements.We measured the 2-m height air temperature and relative humidity at the Beijing Olympic Park and a nearby building roof for more than 1 year to elucidate seasonal variations in air temperature and relative humidity,as well as to investigate the outdoor thermal comfort.The results showed that the lawn of the park could,on average,reduce the air temperature by(0.80±0.19)℃,and increase the relative humidity by(5.24±2.91)% relative to the values measured at the building roof during daytime.During the nighttime,the lawn of the park reduced the air temperature by(2.64±0.64)℃ and increased the relative humidity by(10.77±5.20)%.The park was cooler and more humid than surrounding building area,especially in night period(more pronounced cooling with 1.84℃).Additionally,the lawn of the park could improve outdoor thermal comfort through its cooling and humidifying effects.The level of thermal comfort in the park was higher than that around the building roof for a total of 11 days annually in which it was above one or more thermal comfort levels(average reduced human comfort index of 0.92)except during the winter.
基金Under the auspices of the Airborne Remote Sensing (MARS) Program of Malaysia (No. KSTAS/MACRES/T/2/2004)
文摘Forest fire is a serious disaster all over the world. The Fire Weather Index (FWI) System can be used in ap- plied forestry as a tool to investigate and manage all types of fire. Relative humidity (RH) is a very important parameter to calculate FWI. However, RH interpolated from meteorological data may not be able to provide precise and confident values for areas between far separated stations. The principal objective of this study is to provide high-resolution RH for FWI using MODIS data. The precipitable water vapor (PW) can be retrieved from MODIS using split window tech- niques. Four-year-time-series (2000-2003) of 8-day mean PW and specific humidity (Q) of Peninsular Malaysia were analyzed and the statistic expression between PW and Q was developed. The root-mean-square-error (RMSE) of Q es- timated by PW is generally less than 0.0004 and the correlation coefficient is 0.90. Based on the experiential formula between PW and Q, surface RH can be computed with combination of auxiliary data such as DEM and air temperature (Ta). The mean absolute errors of the estimated RH in Peninsular Malaysia are less than 5% compared to the measured RH and the correlation coefficient is 0.8219. It is proven to be a simple and feasible model to compute high-resolution RH using remote sensing data.
基金supported by National Natural Science Foundation of China(Nos.11205007 and 11205029)
文摘The humidity effects on the benzene decomposition process were investigated by the dielectric barrier discharge(DBD) plasma reactor.The results showed that the water vapor played an important role in the benzene oxidation process.It was found that there was an optimum humidity value for the benzene removal efficiency,and at around 60% relative humidity(RH),the optimum benzene removal efficiency was achieved.At a SIE of 378 J/L,the removal efficiency was 66% at 0% RH,while the removal efficiency reached 75.3% at 60% RH and dropped to 69% at 80% RH.Furthermore,the addition of water inhibited the formation of ozone and NO2 remarkably.Both of the concentrations of ozone and NO2 decreased with increasing of the RH at the same specific input energy.At a SIE of 256 J/L,the concentrations of ozone and NO2 were 5.4 mg/L and 1791 ppm under dry conditions,whereas they were only 3.4 mg/L and 1119 ppm at 63.5%RH,respectively.Finally,the outlet gas after benzene degradation was qualitatively analyzed by FT-IR and GC-MS to determine possible intermediate byproducts.The results suggested that the byproducts in decomposition of benzene primarily consisted of phenol and substitutions of phenol.Based on these byproducts a benzene degradation mechanism was proposed.
基金This work was supported by grants from the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDA19030402 and XDA19030401)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201506002),the National Natural Science Foundation of China(Grant Nos.41675094,41975115)+1 种基金the Natural Science Foundation of Shaanxi Province(Grant No.2021JQ-166),Chinese Universities Scientific Fund(Grant No.2452019224)Open Research Fund of Key Laboratory of the Loess Plateau Soil Erosion and Water Process and Control,Ministry of Water Resources of China(Grant No.HTGY202002).
文摘Recently,the China Meteorological Administration(CMA)released a new Global Atmospheric Reanalysis(CRA-40)dataset for the period 1979−2018.In this study,surface relative humidity(RH)from CRA-40 and other current reanalyses(e.g.,CFSR,ERA5,ERA-Interim,JRA-55,and MERRA-2)is comprehensively evaluated against homogenized observations over China.The results suggest that most reanalyses overestimate the observations by 15%−30%(absolute difference)over the Tibetan Plateau but underestimate the observations by 5%−10%over most of northern China.The CRA-40 performs relatively well in describing the long-term change and variance seen in the observed surface RH over China.Most of the reanalyses reproduce the observed surface RH climatology and interannual variations well,while few reanalyses can capture the observed long-term RH trends over China.Among these reanalyses,the CFSR does poorly in describing the interannual changes in the observed RH,especially in Southwest China.An empirical orthogonal function(EOF)analysis also suggests that the CRA-40 performs better than other reanalyses to capture the first two leading EOF modes revealed by the observations.The results of this study are expected to improve understanding of the strengths and weaknesses of the current reanalysis products and thus facilitate their application.
基金funded by National Nature Science Foundation of China[81102207]Science and Technology Planning Project of Guangdong Province,China[2013B021800041]GUO Yu Ming is supported by NHMRC Centre for air quality and health research and evaluation,Australia[APP 1030259]
文摘Objective Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. Methods This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. Results We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Conclusion Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population.
基金Supported by the National-Natural Science Foundation of China (20936001), the Natural Science Foundation of Guangdong Province, and the State Key Lab of Subtropical Building Science, South China University of Technology (x2yj C709028Z).
文摘The copper based catalysts, CuO/T-Al2O3, CuO/y-Al2O3-cordierite (Cord) and CuO/Cord, were prepared by impregnation method. The catalytic activity of the catalysts was tested in absence and presence of water vapor,and the catalysts were characterized. Temperature program desorption (TPD) experiments or toluene and water on the catalysts were carried out. The influence of water vapor on the activity of the catalysts was discussed. Results showed that addition of the water vapor has a significant negative effect on the catalytic activity of the catalysts.The higher the concentration of the Water vapor in feed steam was, the lower the catalytic activity of the copper based catalysts became, which could be mainly ascribed to the competition of water molecules with toluene molecules for adsorption on the catalyst surfaces. TPD experiments showed that the strength of the interaction between water molecules and three catalysts followed the order: CuO/γ-Al2O3〉CuO/γ-Al2O3-Cord〉CuO/Cord. As a consequence of that, the degree of degradation in the catalytic activity of these three catalysts by the water vapor followed the order: CuO/γ-Al2O3〉CuO/y-Al2O3-Cord〉CuO/Cord. However, the negative effect of the water vapor was reversible.
文摘A novel embedded sensor network records changes in key climatic-environmental variables over a range of altitude in the BaekduDaegan Mountain (BDM) of Gangwon Province in Korea, a protected mountain region with unique biodiversity undergoing climate change research. The investigated area is subdivided into three horizontal north-south study areas. Three variables, temperature (T, °C), relative humidity (RH, %), and light intensity (LI, lumens m-2, or lux, lx), have been continuously measured at hourly intervals from June, 2olo to September, 2011 using HOBO H8 devices at lO fixed study sites. These hourly observations are aggregated to monthly, seasonal and annual mean values, and results are summarized to inaugurate a long-term climate change investigation. A region wide T difference in accordance with altitude, or lapse rate, over the interval is calculated as o.4°C l00 m-1. T lapse rates change seasonally, with winter lapse rates being greater than those of summer. RH is elevated in summer compared to other seasons. LI within forestland is lower during summer and higher during other seasons. The obtained results could closely relate to the vegetation type and structure and the terrain state since data loggers were located in forestland.
基金Funded by National Natural Science Foundation of china (No. 50508034)Guangxi Key Laboratory for the Advanced Materials and New Preparation Technology(No. 063006-5C-13)China,and National Basic Research Programof China(No.2009CB623201)
文摘The relationship between autogenous deformation and internal relative humidity(IRH) of high-strength concrete and high-strength expansive concrete were investigated.The experimental results indicate that,there exists a good linear relationship between autogenous shrinkage and IRH of high-strength concrete but a nonlinear relationship between autogenous deformation and IRH of high-strength expansive concrete with expansive agent.The new autogenous deformation curve can be obtained by transforming the autogenous deformation data of high-strength expansive concrete,and there exists linear relationship between the autogenous deformation and IRH.The concept of "critical internal relative humidity" was proposed,which is defined as the value of IRH when autogenous deformation is zero,to effectively reflect the autogenous deformation characteristic of expansive concrete.
文摘The fate of Polycyclic Aromatic Hydrocarbons (PAHs) residing in the atmosphere has received enormous attention in recent years due to their mutagenic and carcinogenic risks on human health. In this context, the stability of pyrene (as a representative PAHs) on quartz, alumina, montmorillonite, kaolinite, humic acid and quartz coated with sorbed humic acid was investigated at controlled relative humidity (RH: i.e. 5% and 30%) without light irradiation in order to detect the presence of catalytic effect of mineral surface on PAHs decomposition. The stability of pyrene was found to depend strongly on the physicochemical properties of the substrates. Quartz showed a strong catalytic effect for the decomposition of pyrene even though it was coated with sorbed humic acid. Pyrene sorbed on montmorillonite and humic acid remained stable during the experimental period (i.e. 3 days). Moisture in the experimental cell also affected the stability of pyrene in particular minerals. Especially, pyrene sorbed on alumina was rapidly decomposed at higher RH. However, there were almost no effect in the case of quartz, kaolinite and humic acid. Depending on the physicochemical properties of aerosols and RH, PAHs associated with minerals in the atmosphere would be decomposed and/or stably reside in the atmosphere.
基金supported by the National Key Research and Development Project of China (2018YFE0203500)the High-end Research and Training Project for Specialty Leading Person of Jiangsu Higher Vocational Colleges (2020GRGDYX039)the Qing Lan Project of Jiangsu Colleges。
文摘In the present study,the effects of relative humidity on filtrating coal-fired fly ash with hydrophobic poly tetra fluoroethylene(PTFE) membranes were investigated.The intergranular force of particulate matter at different RH conditions was measured by analyzing the critical angle between particles.Effects of humidity(from 30% to 70%) on filtration pressure drop and membrane fouling conditions were characterized.It was found the membrane showed optimal filtration resistance of 530 Pa at RH of 60% and the gas permeance can be maintained at 1440 m^(3)·m^(-2)·h^(-1)·kPa^(-1).Moreover,to optimize the operation parameters for this filtration system,effects of fly ash concentration,diameter,membrane pore size,and gas velocities were systematically investigated.
文摘This research indicates that the gradient of internal relative humidity (IRH) decreases rapidly within 7-day curing age in HPC. The amount of water imported by pre-wetted light-weight aggregate can regulate IRH of concrete. By importing a proper amount of water, the process of the decline of IRH can be delayed and the autogenous shrinkage can be reduced. The relationship among the amount of water imported by pre- wetted lightweight aggregate, IRH and AS was established. The result provides a new method of reducing early AS and enhancing early cracking resistance of HPC.
基金supported by the National Natural Science Foundation of China (40975027)
文摘The multi-fractal ity over China are studied behaviors of relative humid using the multi-fractal de trended fluctuation analysis (DFA) method. Three multi fractal parameters (the spectrum width Aa, the asymmetry Aaas, and the long-range correlation exponent a0) of the singularity spectrum are introduced to quantify the multi-fractal behaviors. The results show that multi-frac tality exists in daily humidity records over most stations in China and is mainly due to the broad distribution of the probability density of the sequence values. Strong multi fractal behaviors over some stations in the Yunnan, Guangdong, and Inner Mongolia provinces are obvious. These behaviors are mainly caused by different long range correlations between large and small fluctuations. The asymmetry of the singularity of relative humidity records is weak, except for a small number of stations in the far east and west of China, where the singularity spec trum is left-skewed. Finally, the long-range correlations in North China are stronger than those in South China, which indicates better predictability in North China. By studying the parameters of the multi-fractal spectrum, various data of long-range power law correlations of the relative humidity records are obtained, which may pro vide theoretical support for climate prediction.
基金supported by the National Key R&D Program of China (2016YFC0201507)the National Natural Science Foundation of China (Grant Nos. 41471367, 91543128 and 41571417)
文摘Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions--North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.