期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system 被引量:18
1
作者 YONG Tai-wen CHEN Ping +5 位作者 DONG Qian DU Qing YANG Feng WANG Xiao-chun LIU Wei-guo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期664-676,共13页
In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enh... In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield. 展开更多
关键词 relay intercropping lower nitrogen nitrogen use efficiency nitrogen fixation nitrogen uptake
下载PDF
Effect of Limited Single Irrigation on Yield of Winter Wheat and Spring Maize Relay Intercropping 被引量:10
2
作者 ZHANG Bu-Chong HUANG Gao-Bao LI Feng-Min 《Pedosphere》 SCIE CAS CSCD 2007年第4期529-537,共9页
A field experiment was conducted during the 2002/2003 cropping season of winter wheat (Triticum aestivum) and spring maize (Zea mays) to evaluate the effect of limited single drip irrigation on the yield and water... A field experiment was conducted during the 2002/2003 cropping season of winter wheat (Triticum aestivum) and spring maize (Zea mays) to evaluate the effect of limited single drip irrigation on the yield and water use of both crops under relay intercropping in a semi-arid area of northwestern China. A controlled 35 mm single irrigation, either early or late, was applied to each crop at a certain growth stage. Soil water, leaf area, final grain yield and yield components such as the thousand-grain weight, length of spike, fertile spikelet number, number of grains per spike, and grain weight per spike were measured, and water use efficiency and leaf area index were calculated for the irrigated and non-irrigated relay intercropping treatments and sole cropping controls. The results showed that yield, yield components, water use efficiency, and leaf area index in the relay intercropping treatments were affected by limited single drip irrigation during various growth stages of wheat and maize. The total yields in the relay intercropping treatment irrigated during the heading stage of wheat and the heading and anthesis stage of maize were the highest among all the treatments, followed by that irrigated during the anthesis stage of wheat and silking stage of maize; so was the water use efficiency. Significant differences occurred in most yield components between the irrigated and non-irrigated relay-intercropping treatments. The dynamics of the leaf area index in the relay-intercropped or solely cropped wheat and maize showed a type of single-peak pattern, whereas that of the relay intercropping treatments showed a type of double-peak pattern. Appropriately, limited single irrigation and controlled soil water content level could result in higher total yield, water use efficiency, and leaf area index, and improved yield components in relay intercropping. This practice saved the amount of water used for irrigation and also increased the yield. Therefore, heading stage of wheat and heading and anthesis stage of maize were suggested to be the optimum limited single irrigation time for relay-intercropped wheat and maize in the semi-arid area. 展开更多
关键词 leaf area index limited single irrigation water use efficiency winter wheat and spring maize relay intercropping yield and yield components
下载PDF
Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean
3
作者 Ping Chen Qing Du +8 位作者 Benchuan Zheng Huan Yang Zhidan Fu Kai Luo Ping Lin Yilin Li Tian Pu Taiwen Yong Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1910-1928,共19页
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr... Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation. 展开更多
关键词 relay intercropping GENOTYPE crop configuration symbiotic nitrogen fixation SOYBEAN NODULE
下载PDF
Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input 被引量:11
4
作者 Qing Du Li Zhou +11 位作者 Ping Chen Xiaoming Liu Chun Song Feng Yang Xiaochun Wang Weiguo Liu Xin Sun Junbo Du Jiang Liu Kai Shu Wenyu Yang Taiwen Yong 《The Crop Journal》 SCIE CAS CSCD 2020年第1期140-152,共13页
Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilizat... Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilization can help in dissecting the mechanisms underlying N uptake and utilization in legume-nonlegume intercropping systems.An experiment was performed with three planting patterns:monoculture maize(MM),monoculture soybean(SS),and maize-soybean relay intercropping(IMS),and three N application levels:zero N(NN),reduced N(RN),and conventional N(CN)to investigate crop N uptake and utilization characteristics.N recovery efficiency and 15N recovery rate of crops were higher under RN than under CN,and those under RN were higher under intercropping than under the corresponding monocultures.Compared with MM,IMS showed a lower soil N-dependent rate(SNDR)in 2012.However,the SNDR of MM rapidly declined from 86.8%in 2012 to 49.4%in 2014,whereas that of IMS declined slowly from 75.4%in 2012 to 69.4%in 2014.The interspecific N competition rate(NCRms)was higher under RN than under CN,and increased yearly.Soybean nodule dry weight and nitrogenase activities were respectively 34.2%and 12.5%higher under intercropping than in monoculture at the beginning seed stage.The amount(Ndfa)and ratio(%Ndfa)of soybean N2 fixation were significantly greater under IS than under SS.In conclusion,N fertilizer was more efficiently used under RN than under CN;in particular,the relay intercropping system promoted N fertilizer utilization in comparison with the corresponding monocultures.An intercropping system helps to maintain soil fertility because interspecific N competition promotes biological N fixation by soybean by reducing N input.Thus,a maize-soybean relay intercropping system with reduced N application is sustainable and environmentally friendly. 展开更多
关键词 Maize-soybean relay intercropping Reduced nitrogen Biological nitrogen fixation Nitrogen recovery efficiency Soil nitrogen dependent rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部