Health monitoring data or the data about infectious diseases such as COVID-19 may need to be constantly updated and dynamically released,but they may contain user's sensitive information.Thus,how to preserve the u...Health monitoring data or the data about infectious diseases such as COVID-19 may need to be constantly updated and dynamically released,but they may contain user's sensitive information.Thus,how to preserve the user's privacy before their release is critically important yet challenging.Differential Privacy(DP)is well-known to provide effective privacy protection,and thus the dynamic DP preserving data release was designed to publish a histogram to meet DP guarantee.Unfortunately,this scheme may result in high cumulative errors and lower the data availability.To address this problem,in this paper,we apply Jensen-Shannon(JS)divergence to design the OPTICS(Ordering Points To Identify The Clustering Structure)scheme.It uses JS divergence to measure the difference between the updated data set at the current release time and private data set at the previous release time.By comparing the difference with a threshold,only when the difference is greater than the threshold,can we apply OPTICS to publish DP protected data sets.Our experimental results show that the absolute errors and average relative errors are significantly lower than those existing works.展开更多
The design and manufacture of anti-scaling surface is a prospective way to prevent scaling in oil field.In this work,a novel superhydrophobic Cu^(2+)-loaded and DTPMPA-modified anodized copper oxide(S-Cu^(2+)/D-ACO)co...The design and manufacture of anti-scaling surface is a prospective way to prevent scaling in oil field.In this work,a novel superhydrophobic Cu^(2+)-loaded and DTPMPA-modified anodized copper oxide(S-Cu^(2+)/D-ACO)coating was fabricated by modification of 1H,1H,2H,2H-perfluorodecyltriethoxysilane.The valid storing of scale inhibitors at the coating surface and the interfacial release of Cu^(2+)ions contribute to enhancing the anti-scaling of the S-Cu^(2+)/D-ACO coating.The water contact angle of the S-Cu^(2+)/D-ACO coating is 163.03°and exhibits superhydrophobicity,which makes it difficult for CaCO_(3)to deposit at the surface of the coating.DTPMPA will steadily lurk into the inner space,and Cu^(2+)will be loaded at the interface in the form of the DTPMPA:Cu^(2+)chelate.During the deposition of CaCO_(3),the dynamic release of DTPMPA can be realized by transferring DTPMPA:Cu^(2+)to DTPMPA:Ca^(2+).Interestingly,the released Cu^(2+)hinders the active growth of CaCO_(3).After 48 h of scaling,the mass of CaCO_(3)scale at the S-Cu^(2+)/D-ACO coating surface is only 44.1%that of the anodized copper oxide coating.The excellent anti-scaling performance of the S-Cu^(2+)/D-ACO coating is determined by the synergistic effect of the DTPMPA lurking and dynamic release,as well as the Cu^(2+)inhibition at the interface of superhydrophobic coating and against CaCO_(3)deposition.This research provides a new exploration for designing and fabricating anti-scaling superhydrophobic surface for oil field development.展开更多
Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was ad...Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.展开更多
The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditi...The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditions on crack surfaces,i.e.electric impermeable and electric permeable,are obtained.Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations, which can be solved numerically.The effects of electrical load,geometry criterion of piezoelectric strips,relative location of cracks and material properties on the dynamic energy release rate are examined.展开更多
Biogenic volatile organic compounds(BVOCs)have positive impact on environmental ecology and human physical and mental health.In this paper,the collection methods and components analysis,dynamic release mechanism,ecolo...Biogenic volatile organic compounds(BVOCs)have positive impact on environmental ecology and human physical and mental health.In this paper,the collection methods and components analysis,dynamic release mechanism,ecological function and the impact on human health of BVOCs were summarized.The purpose of this paper is to provide reference and suggestions for further study on the infl uence mechanism of BVOCs on human health,and to provide a theoretical basis for its application in landscape environment.展开更多
Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic...Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic stress intensity factors at the tip of a curved crack. Due to three dimensional curved crack growth the dynamic energy release rate can be calculated by using the Irwin's formula. A three dimensional curved crack in materials with inhomogeneous fracture toughness are considered. Paths of a brittle three dimensional curved crack propagating along a welded joint are predicted via the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations.展开更多
Nonexchangeable K (NEK) is the major portion of the reserve of available K in soil and a primary factor in determining soil K fertility. The questions of how much NEK is in soils and how to quantify total NEK in soi...Nonexchangeable K (NEK) is the major portion of the reserve of available K in soil and a primary factor in determining soil K fertility. The questions of how much NEK is in soils and how to quantify total NEK in soils are so far still unclear due to the complicated effects of various minerals on K fixation. In this study, the NEK in 9 soils was extracted with sodium tetraphenylboron (NaBPh4) for various time periods longer than 1 d. The results showed that the NEK extracted by NaBPh4 gradually increased with time, but showed no more increase after the duration of extraction exceeded 10 20 d. As the temperature increased from 25 to 45 ~C, the duration to obtain the maximum extraction of NEK was reduced from 20 to 10 d, and the maximum values of NEK released at both temperatures was almost the same for each soil. The maximum NEK (MNEK) of the 9 soils extracted by NaBPh4 varied from 3074 to 10081 mg kg-1, accounting for 21% 56% of the total soil K. There was no significant correlation between MNEK released by NaBPh4 and other forms of K, such as NH4OAc-extracted K, HNO3-extracted K and total K in soils, which indicates that NEK is a special form of K that has no inevitable relationship to the other forms of K in soils. The MNEK extraction by NaBPh4 in this study indicated that the total NEK in the soils could be differentiated from soil structural K and quantified with the modified NaBPh4 method. The high MNEK in soils made NEK much more important in the role of the plant-available K pool. How to fraetionate NEK into different fractions and establish the methods to quantify each NEK fraction according to their bioavailability is of great importance for future research.展开更多
FeOx-CeO2 mixed oxides with increasing Fe/(Ce+Fe) atomic ratio (1-20 mol%) were prepared by sol-gel method and characterized by X-ray powder diffraction (XRD), Brunauer-Emrnett-Teller (BET) and Hydrogen tempe...FeOx-CeO2 mixed oxides with increasing Fe/(Ce+Fe) atomic ratio (1-20 mol%) were prepared by sol-gel method and characterized by X-ray powder diffraction (XRD), Brunauer-Emrnett-Teller (BET) and Hydrogen temperature-programmed reduction (H2-TPR) techniques. The dynamic oxygen storage capacity (DOSC) was investigated by mass spectrometry with CO/O2 transient pulses. The powder XRD data following Rietveld refinement revealed that the solubility limit of iron oxides in the CeO2 was 5 mol% based on Fe/(Ce+Fe). The lattice parameters experienced a decrease followed by an increase due to the influence of the maximum solubility limit of iron oxides in the CeO2. TPR analysis revealed that Fe introduction into ceria strongly modified the textual and structural properties, which influenced the oxygen handling properties. DOSC results revealed that Ce-based materials containing Fe oxides with multiple valences contribute to the majority of DOSC. The kinetic analysis indicated that the calculated apparent kinetic parameters obey the compensation effect. The three-way catalytic performance for Pd-only catalysts based on the Fe doping support exhibited the redundant iron species separated out of the CeO2 and interacted with the ceria and Pd species on the surface, which seriously influenced the catalytic properties, especially after hydrothermal aging treatment.展开更多
A series of Pt-Pd bimetallic catalysts supported on CeO_(2)-ZrO_(2)-La_(2)O_(3) mixed oxides were synthesized through the conventional impregnation method.Three-way catalytic performance evaluations along with detaile...A series of Pt-Pd bimetallic catalysts supported on CeO_(2)-ZrO_(2)-La_(2)O_(3) mixed oxides were synthesized through the conventional impregnation method.Three-way catalytic performance evaluations along with detailed physio-chemical characterizations were carried out to establish possible structure-activity correlations.Results show that on the one hand,different Pt/Pd ratios can strongly affect the TWC behaviors of Pt-Pd/CZL catalysts by modulating the synergistic effect between Pt and Pd.On the other hand,higher Pt/Pd ratio also favors better dispersion of precious metals.Such improved precious metals(PM)dispersion can promote the metal-support interaction and increase the surface oxygen vacancies concentration,thereby raising the dynamic oxygen storage/release capacity,improving the redox ability as well as enha ncing the thermal stability of the Pt-Pd/CZL catalyst.Moreover,the stro ng metal-support interaction can augment surface oxygen vacancy concentration,thereby benefiting low temperature CO and NO reaction via augmented NOxadsorption and nitrate conversion.展开更多
基金supported in part by National Natural Science Foundation of China(No.61672106)in part by Natural Science Foundation of Beijing,China(L192023)in part by the project of promoting the Classified Development of Beijing Information Science and Technology University(No.5112211038,5112211039)。
文摘Health monitoring data or the data about infectious diseases such as COVID-19 may need to be constantly updated and dynamically released,but they may contain user's sensitive information.Thus,how to preserve the user's privacy before their release is critically important yet challenging.Differential Privacy(DP)is well-known to provide effective privacy protection,and thus the dynamic DP preserving data release was designed to publish a histogram to meet DP guarantee.Unfortunately,this scheme may result in high cumulative errors and lower the data availability.To address this problem,in this paper,we apply Jensen-Shannon(JS)divergence to design the OPTICS(Ordering Points To Identify The Clustering Structure)scheme.It uses JS divergence to measure the difference between the updated data set at the current release time and private data set at the previous release time.By comparing the difference with a threshold,only when the difference is greater than the threshold,can we apply OPTICS to publish DP protected data sets.Our experimental results show that the absolute errors and average relative errors are significantly lower than those existing works.
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51925403)the Major Research Plan of National Natural Science Foundation of China(Grant No.91934302)the National Science Foundation of China(21676052,21606042)
文摘The design and manufacture of anti-scaling surface is a prospective way to prevent scaling in oil field.In this work,a novel superhydrophobic Cu^(2+)-loaded and DTPMPA-modified anodized copper oxide(S-Cu^(2+)/D-ACO)coating was fabricated by modification of 1H,1H,2H,2H-perfluorodecyltriethoxysilane.The valid storing of scale inhibitors at the coating surface and the interfacial release of Cu^(2+)ions contribute to enhancing the anti-scaling of the S-Cu^(2+)/D-ACO coating.The water contact angle of the S-Cu^(2+)/D-ACO coating is 163.03°and exhibits superhydrophobicity,which makes it difficult for CaCO_(3)to deposit at the surface of the coating.DTPMPA will steadily lurk into the inner space,and Cu^(2+)will be loaded at the interface in the form of the DTPMPA:Cu^(2+)chelate.During the deposition of CaCO_(3),the dynamic release of DTPMPA can be realized by transferring DTPMPA:Cu^(2+)to DTPMPA:Ca^(2+).Interestingly,the released Cu^(2+)hinders the active growth of CaCO_(3).After 48 h of scaling,the mass of CaCO_(3)scale at the S-Cu^(2+)/D-ACO coating surface is only 44.1%that of the anodized copper oxide coating.The excellent anti-scaling performance of the S-Cu^(2+)/D-ACO coating is determined by the synergistic effect of the DTPMPA lurking and dynamic release,as well as the Cu^(2+)inhibition at the interface of superhydrophobic coating and against CaCO_(3)deposition.This research provides a new exploration for designing and fabricating anti-scaling superhydrophobic surface for oil field development.
基金provided by the National Natural Science Foundation of China (No.51374097)the Science Foundation General Projects of Chinese Postgraduate (No.2014M561384)Key Project of Science and Technology Research of Department of Education in Heilongjiang Province (No.12541z009)
文摘Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.
基金Project supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(No.HKUT014/00E)the National Natural Science Foundation of China(No.19772029).
文摘The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditions on crack surfaces,i.e.electric impermeable and electric permeable,are obtained.Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations, which can be solved numerically.The effects of electrical load,geometry criterion of piezoelectric strips,relative location of cracks and material properties on the dynamic energy release rate are examined.
基金National Natural Science Foundation of China(31600573)Science and Technology Innovation Guidance Project of Zhaoqing City(201904031601)Guangdong Key Laboratory of Environmental Health and Resource Utilization(2020B121201014).
文摘Biogenic volatile organic compounds(BVOCs)have positive impact on environmental ecology and human physical and mental health.In this paper,the collection methods and components analysis,dynamic release mechanism,ecological function and the impact on human health of BVOCs were summarized.The purpose of this paper is to provide reference and suggestions for further study on the infl uence mechanism of BVOCs on human health,and to provide a theoretical basis for its application in landscape environment.
基金supported by National Natural Science Foundation of China(No.91016026)Henan Province Natural Science Foundation Subsidy Project(No.152300410003)
文摘Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic stress intensity factors at the tip of a curved crack. Due to three dimensional curved crack growth the dynamic energy release rate can be calculated by using the Irwin's formula. A three dimensional curved crack in materials with inhomogeneous fracture toughness are considered. Paths of a brittle three dimensional curved crack propagating along a welded joint are predicted via the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest of China (No.201203013)the National Natural Science Foundation of China(Nos.40971176 and 40201027)the International Potash Institute(IPI) China Project
文摘Nonexchangeable K (NEK) is the major portion of the reserve of available K in soil and a primary factor in determining soil K fertility. The questions of how much NEK is in soils and how to quantify total NEK in soils are so far still unclear due to the complicated effects of various minerals on K fixation. In this study, the NEK in 9 soils was extracted with sodium tetraphenylboron (NaBPh4) for various time periods longer than 1 d. The results showed that the NEK extracted by NaBPh4 gradually increased with time, but showed no more increase after the duration of extraction exceeded 10 20 d. As the temperature increased from 25 to 45 ~C, the duration to obtain the maximum extraction of NEK was reduced from 20 to 10 d, and the maximum values of NEK released at both temperatures was almost the same for each soil. The maximum NEK (MNEK) of the 9 soils extracted by NaBPh4 varied from 3074 to 10081 mg kg-1, accounting for 21% 56% of the total soil K. There was no significant correlation between MNEK released by NaBPh4 and other forms of K, such as NH4OAc-extracted K, HNO3-extracted K and total K in soils, which indicates that NEK is a special form of K that has no inevitable relationship to the other forms of K in soils. The MNEK extraction by NaBPh4 in this study indicated that the total NEK in the soils could be differentiated from soil structural K and quantified with the modified NaBPh4 method. The high MNEK in soils made NEK much more important in the role of the plant-available K pool. How to fraetionate NEK into different fractions and establish the methods to quantify each NEK fraction according to their bioavailability is of great importance for future research.
基金support the National HighTech Research and Development Program of China (No.2011AA03A405)
文摘FeOx-CeO2 mixed oxides with increasing Fe/(Ce+Fe) atomic ratio (1-20 mol%) were prepared by sol-gel method and characterized by X-ray powder diffraction (XRD), Brunauer-Emrnett-Teller (BET) and Hydrogen temperature-programmed reduction (H2-TPR) techniques. The dynamic oxygen storage capacity (DOSC) was investigated by mass spectrometry with CO/O2 transient pulses. The powder XRD data following Rietveld refinement revealed that the solubility limit of iron oxides in the CeO2 was 5 mol% based on Fe/(Ce+Fe). The lattice parameters experienced a decrease followed by an increase due to the influence of the maximum solubility limit of iron oxides in the CeO2. TPR analysis revealed that Fe introduction into ceria strongly modified the textual and structural properties, which influenced the oxygen handling properties. DOSC results revealed that Ce-based materials containing Fe oxides with multiple valences contribute to the majority of DOSC. The kinetic analysis indicated that the calculated apparent kinetic parameters obey the compensation effect. The three-way catalytic performance for Pd-only catalysts based on the Fe doping support exhibited the redundant iron species separated out of the CeO2 and interacted with the ceria and Pd species on the surface, which seriously influenced the catalytic properties, especially after hydrothermal aging treatment.
基金Project supported by the Key Program of Science Technology Department of Zhejiang Province(2018C03037)the Natural Science Foundation of Jiangsu Province(BK20201037)+2 种基金Jiangsu Industry-University-Research Cooperation Project(BY2022101)the Scientific Research Fund of Nanjing Institute of Technology(YKJ2019111)Students'Science and Technology Innovation Fund of Nanjing Institute of Technology(TB202312034).
文摘A series of Pt-Pd bimetallic catalysts supported on CeO_(2)-ZrO_(2)-La_(2)O_(3) mixed oxides were synthesized through the conventional impregnation method.Three-way catalytic performance evaluations along with detailed physio-chemical characterizations were carried out to establish possible structure-activity correlations.Results show that on the one hand,different Pt/Pd ratios can strongly affect the TWC behaviors of Pt-Pd/CZL catalysts by modulating the synergistic effect between Pt and Pd.On the other hand,higher Pt/Pd ratio also favors better dispersion of precious metals.Such improved precious metals(PM)dispersion can promote the metal-support interaction and increase the surface oxygen vacancies concentration,thereby raising the dynamic oxygen storage/release capacity,improving the redox ability as well as enha ncing the thermal stability of the Pt-Pd/CZL catalyst.Moreover,the stro ng metal-support interaction can augment surface oxygen vacancy concentration,thereby benefiting low temperature CO and NO reaction via augmented NOxadsorption and nitrate conversion.