期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
1
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
Reliability Analysis of Aircraft Condition Monitoring Network Using an Enhanced BDD Algorithm 被引量:4
2
作者 ZHAO Changxiao CHEN Yao WANG Hailiang XIONG Huagang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期925-930,共6页
The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condit... The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condition monitoring network works in a real-time manner that all the data should be transmitted within the deadline to ensure that the control center makes proper decision in time. Only the connectedness between the source node and destination cannot guarantee the data to be transmitted in time. In this paper, we take the time deadline into account and build the task-based reliability model. The binary decision diagram (BDD), which has the merit of efficiency in computing and storage space, is introduced when calculating the reliability of the network and addressing the essential variable. A case is analyzed using the algorithm proposed in this paper. The experimental results show that our method is efficient and proper for the reliability analysis of the real-time network. 展开更多
关键词 reliability binary decision diagram aircraft condition monitoring network real-time network calculus
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部