Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condit...The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condition monitoring network works in a real-time manner that all the data should be transmitted within the deadline to ensure that the control center makes proper decision in time. Only the connectedness between the source node and destination cannot guarantee the data to be transmitted in time. In this paper, we take the time deadline into account and build the task-based reliability model. The binary decision diagram (BDD), which has the merit of efficiency in computing and storage space, is introduced when calculating the reliability of the network and addressing the essential variable. A case is analyzed using the algorithm proposed in this paper. The experimental results show that our method is efficient and proper for the reliability analysis of the real-time network.展开更多
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
基金National Natural Science Foundation of China (60879024)
文摘The aircraft condition monitoring network is responsible for collecting the status of each component in aircraft. The reliability of this network has a significant effect on safety of the aircraft. The aircraft condition monitoring network works in a real-time manner that all the data should be transmitted within the deadline to ensure that the control center makes proper decision in time. Only the connectedness between the source node and destination cannot guarantee the data to be transmitted in time. In this paper, we take the time deadline into account and build the task-based reliability model. The binary decision diagram (BDD), which has the merit of efficiency in computing and storage space, is introduced when calculating the reliability of the network and addressing the essential variable. A case is analyzed using the algorithm proposed in this paper. The experimental results show that our method is efficient and proper for the reliability analysis of the real-time network.