期刊文献+
共找到2,245篇文章
< 1 2 113 >
每页显示 20 50 100
Assessment of Dependent Performance Shaping Factors in SPAR-H Based on Pearson Correlation Coefficient 被引量:1
1
作者 Xiaoyan Su Shuwen Shang +2 位作者 Zhihui Xu Hong Qian Xiaolei Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1813-1826,共14页
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th... With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method. 展开更多
关键词 Reliability evaluation human reliability analysis SPAR-H performance shaping factors DEPENDENCE pearson correlation analysis
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
2
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
System Reliability Analysis Method Based on T-S FTA and HE-BN 被引量:1
3
作者 Qing Xia Yonghua Li +1 位作者 Dongxu Zhang YufengWang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1769-1794,共26页
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint... For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies. 展开更多
关键词 System reliability D-S evidence theory hyper-ellipsoidal bayesian network T-S fault tree
下载PDF
Belief reliability:a scientific exploration of reliability engineering
4
作者 ZHANG Qingyuan LI Xiaoyang +1 位作者 ZU Tianpei KANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期619-643,共25页
This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliabil... This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliability engineering are summarized as a query,a dilemma,and a puzzle.Then,through philosophical reflection,we introduce the theoretical solutions given by belief reliability theory,including scientific principles,basic equations,reliability science experiments,and mathematical measures.The basic methods and technologies of belief reliability,namely,belief reliability analysis,function-oriented belief reliability design,belief reliability evaluation,and several newly developed methods and technologies are sequentially elaborated and overviewed.Based on the above investigations,we summarize the significance of belief reliability theory and make some prospects about future research,aiming to promote the development of reliability science and engineering. 展开更多
关键词 belief reliability performance margin reliability experiment chance measure UNCERTAINTY
下载PDF
Efficient slope reliability and sensitivity analysis using quantile-based first-order second-moment method
5
作者 Zhiyong Yang Chengchuan Yin +2 位作者 Xueyou Li Shuihua Jiang Dianqing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4192-4203,共12页
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are... This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis. 展开更多
关键词 Slope reliability Sensitivity analysis QUANTILE First-order second-moment method(FOSM) First-order reliability method(FORM)
下载PDF
Ultra Reliable Load-Aware Connection Management(LACM)Algorithm in WIA-FA Systems
6
作者 Liu Gang Jiang Chunhao +3 位作者 Ren Xiaochun Fan Pingzhi Liang Chengchao Ma Zheng 《China Communications》 SCIE CSCD 2024年第8期142-161,共20页
The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wir... The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm. 展开更多
关键词 connection management load-aware multi-connectivity reliability RETRANSMISSION WIAFA
下载PDF
Transparency:The Missing Link to Boosting AI Transformations in Chemical Engineering
7
作者 Yue Yuan Donovan Chaffart +1 位作者 Tao Wu Jesse Zhu 《Engineering》 SCIE EI CAS CSCD 2024年第8期45-60,共16页
The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high p... The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high profitability,such as chemical engineering(CE).In order to promote reliable AI utilization in CE,this review discusses the concept of transparency within AI utilizations,which is defined based on both explainable AI(XAI)concepts and key features from within the CE field.This review also highlights the requirements of reliable AI from the aspects of causality(i.e.,the correlations between the predictions and inputs of an AI),explainability(i.e.,the operational rationales of the workflows),and informativeness(i.e.,the mechanistic insights of the investigating systems).Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE.Furthermore,a comprehensive transparency analysis case study is provided as an example to enhance understanding.Overall,this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization.With this vital missing link,AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE. 展开更多
关键词 TRANSPARENCY Explainable AI Reliability CAUSALITY Explainability INFORMATIVENESS Hybrid modeling Physics-informed
下载PDF
Mechanical Properties and Thermal Shock Resistance of SrAl_(2)Si_(2)O_(8) Reinforced BN Ceramic Composites
8
作者 WANG Bo CAI Delong +7 位作者 ZHU Qishuai LI Daxin YANG Zhihua DUAN Xiaoming LI Yanan WANG Xuan JIA Dechang ZHOU Yu 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第10期1182-1188,共7页
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ... Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually. 展开更多
关键词 BN MATRIX composite hot-press SINTERING mechanical PROPERTY thermal shock resistance service reliability
下载PDF
On the relationship between imprint and reliability in Hf_(0.5)Zr_(0.5)O_(2) based ferroelectric random access memory
9
作者 Peng Yuan Yuting Chen +9 位作者 Liguo Chai Zhengying Jiao Qingjie Luan Yongqing Shen Ying Zhang Jibin Leng Xueli Ma Jinjuan Xiang Guilei Wang Chao Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期42-47,共6页
The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O... The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O_(2)-based ferroelectric random access memory.The influence of imprint on the retention and endurance is demonstrated.Furthermore,a solution in circuity is pro-posed to effectively solve the misreading problem caused by imprint. 展开更多
关键词 FERAM HZO IMPRINT RELIABILITY
下载PDF
A non-probabilistic reliability topology optimization method based on aggregation function and matrix multiplication considering buckling response constraints
10
作者 Lei WANG Yingge LIU +2 位作者 Juxi HU Weimin CHEN Bing HAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期321-336,共16页
A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linea... A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linear buckling analysis is conducted,and the sensitivity solution of the linear buckling factor is achieved.For a specific problem in linear buckling topology optimization,a Heaviside projection function based on the exponential smooth growth is developed to eliminate the gray cells.The aggregation function method is used to consider the high-order eigenvalues,so as to obtain continuous sensitivity information and refined structural design.With cyclic matrix programming,a fast topology optimization method that can be used to efficiently obtain the unit assembly and sensitivity solution is conducted.To maximize the buckling load,under the constraint of the given buckling load,two types of topological optimization columns are constructed.The variable density method is used to achieve the topology optimization solution along with the moving asymptote optimization algorithm.The vertex method and the matching point method are used to carry out an uncertainty propagation analysis,and the non-probability reliability topology optimization method considering buckling responses is developed based on the transformation of non-probability reliability indices based on the characteristic distance.Finally,the differences in the structural topology optimization under different reliability degrees are illustrated by examples. 展开更多
关键词 BUCKLING topology optimization aggregation function uncertainty propagation analysis non-probabilistic reliability
下载PDF
Development and validation of a novel questionnaire regarding vision screening among preschool teachers in Malaysia
11
作者 Shazrina Ariffin Saadah Mohamed Akhir Sumithira Narayanasamy 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期1102-1109,共8页
AIM:To develop and evaluate the validity and reliability of a knowledge,attitude,and practice questionnaire related to vision screening(KAP-VST)among preschool teachers in Malaysia.METHODS:The questionnaire was develo... AIM:To develop and evaluate the validity and reliability of a knowledge,attitude,and practice questionnaire related to vision screening(KAP-VST)among preschool teachers in Malaysia.METHODS:The questionnaire was developed through a literature review and discussions with experts.Content and face validation were conducted by a panel of experts(n=10)and preschool teachers(n=10),respectively.A pilot study was conducted for construct validation(n=161)and test-retest reliability(n=60)of the newly developed questionnaire.RESULTS:Based on the content and face validation,71 items were generated,and 68 items were selected after exploratory factor analysis.The content validity index for items(I-CVI)score ranged from 0.8-1.0,and the content validity index for scale(S-CVI)/Ave was 0.99.Internal consistency was KR^(2)0=0.93 for knowledge,Cronbach’s alpha=0.758 for attitude,and Cronbach’s alpha=0.856 for practice.CONCLUSION:The KAP-VST is a valid and reliable instrument for assessing knowledge,attitude,and practice in relation to vision screening among preschool teachers in Malaysia. 展开更多
关键词 validity RELIABILITY preschool teachers vision screening QUESTIONNAIRE
下载PDF
A Planning Method for Operational Test of UAV Swarm Based on Mission Reliability
12
作者 Jingyu Wang Ping Jiang Jianjun Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1889-1918,共30页
The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the... The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning. 展开更多
关键词 UAV swarm PMS MOQPSO BDD mission reliability operational test planning
下载PDF
Introduction to the Special Issue on Computer-Aided Uncertainty Modeling and Reliability Evaluation for Complex Engineering Structures
13
作者 Debiao Meng Abílio Manuel Pinho de Jesus Zeng Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期1-5,共5页
1 Summary With the advancement of science and technology,complex engineering structures are widely used in extreme environments[1].In equipment service,many uncertainty factors significantly affect safety and reliabil... 1 Summary With the advancement of science and technology,complex engineering structures are widely used in extreme environments[1].In equipment service,many uncertainty factors significantly affect safety and reliability[2–5].Therefore,ensuring high reliability of structures has become an important research direction in engineering design.At the same time,the importance of equipment health management of complex engineering structures is becoming increasingly prominent[6–8].Computer-aided uncertainty modeling and reliability assessment have become key tools,and finite element simulation and algorithmic innovation play a key role in the reliability analysis of complex equipment[9,10].These techniques can accurately simulate stress and damage accumulation under various operating environments,providing engineers with important decision support and optimization solutions. 展开更多
关键词 EXTREME RELIABILITY environments
下载PDF
Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint
14
作者 Zibin Mao Qinghai Zhao Liang Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期757-792,共36页
This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of m... This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam. 展开更多
关键词 Stress constraint probabilistic-ellipsoid hybrid topology optimization reliability analysis multi-material design
下载PDF
An Improved CREAM Model Based on DS Evidence Theory and DEMATEL
15
作者 Zhihui Xu Shuwen Shang +3 位作者 Yuntong Pu Xiaoyan Su Hong Qian Xiaolei Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2597-2617,共21页
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ... Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable. 展开更多
关键词 Human reliability analysis CREAM uncertainty modeling DEPENDENCE Dempster-Shafer evidence theory DEMATEL
下载PDF
Mitigating Straggler Effect in Federated Learning Based on Reconfigurable Intelligent Surface over Internet of Vehicles
16
作者 Li Zejun Wu Hao +2 位作者 Lu Yunlong Dai Yueyue Ai Bo 《China Communications》 SCIE CSCD 2024年第8期62-78,共17页
To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station ... To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station without massive raw data exchange.However,heterogeneous computing and communication resources of vehicles cause straggler effect which weakens the reliability of federated learning.Dropping out vehicles with limited resources confines the training data.As a result,the accuracy and applicability of federated learning models will be reduced.To mitigate the straggler effect and improve performance of federated learning,we propose a reconfigurable intelligent surface(RIS)-assisted federated learning framework to enhance the communication reliability for parameter transmission in the IoV.Furthermore,we optimize the phase shift of RIS to achieve a more reliable communication environment.In addition,we define vehicular competence to measure both vehicular trustworthiness and resources.Based on the vehicular competence,the straggler effect is mitigated where training tasks of computing stragglers are offloaded to surrounding vehicles with high competence.The experiment results verify that our proposed framework can improve the reliability of federated learning in terms of computing and communication in the IoV. 展开更多
关键词 reliable federated learning RIS straggler effect vehicular competence
下载PDF
Reliability Assessment of a New General Matching Composed Network
17
作者 Zhengyuan Liang Junbin Liang Guoxuan Zhong 《China Communications》 SCIE CSCD 2024年第2期245-257,共13页
The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation. Therefore, the assessment of reliability in underlying interconnection networks has become an inc... The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation. Therefore, the assessment of reliability in underlying interconnection networks has become an increasingly important research issue. However, at present, the reliability assessment of many interconnected networks is not yet accurate,which inevitably weakens their fault tolerance and diagnostic capabilities. To improve network reliability,researchers have proposed various methods and strategies for precise assessment. This paper introduces a novel family of interconnection networks called general matching composed networks(gMCNs), which is based on the common characteristics of network topology structure. After analyzing the topological properties of gMCNs, we establish a relationship between super connectivity and conditional diagnosability of gMCNs. Furthermore, we assess the reliability of g MCNs, and determine the conditional diagnosability of many interconnection networks. 展开更多
关键词 conditional diagnosability interconnection networks network reliability super connectivity
下载PDF
Efficient slope reliability analysis under soil spatial variability using maximum entropy distribution with fractional moments
18
作者 Chengxin Feng Marcos A.Valdebenito +3 位作者 Marcin Chwała Kang Liao Matteo Broggi Michael Beer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1140-1152,共13页
Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty ... Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems. 展开更多
关键词 SLOPE Random field Reliability analysis Maximum entropy distribution Latinized partial stratified sampling
下载PDF
Inverse reliability analysis and design for tunnel face stability considering soil spatial variability
19
作者 Zheming Zhang Jian Ji +1 位作者 Xiangfeng Guo Siang Huat Goh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1552-1564,共13页
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran... The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata. 展开更多
关键词 Limit analysis Tunnel face stability Spatial variability HLRF algorithm Inverse reliability method
下载PDF
On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis
20
作者 Fangyi Li Dachang Zhu Huimin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1981-1999,共19页
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems... In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem. 展开更多
关键词 Mixed uncertainty probability model convex model time-variant reliability analysis
下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部