期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Study on Remaining Oil at High Water Cut Stage of the Offshore Strong Bottom Water Reservoir
1
作者 Jie Tan Zhang Zhang +2 位作者 Tingli Li Jingmin Guo Mo Zhang 《Journal of Geoscience and Environment Protection》 2023年第6期76-82,共7页
C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The compre... C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period. 展开更多
关键词 Bohai oilfield Heavy oil Reservoir Flooding Law remaining oil
下载PDF
Applying the Dynamic Two-Step Method to Forecast Remaining Oil Distribution of Lower Series ,Xiaermen Oilfield 被引量:2
2
作者 周红 汤传意 李增辉 《Journal of China University of Geosciences》 SCIE CSCD 2006年第1期65-70,共6页
The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of re... The distribution of remaining oil is often described qualitatively. The remaining oil distributed in the whole reservoir is calculated according to the characteristics of the space distribution of the saturation of remaining oil. Logging data are required to accomplish this. However, many such projects cannot be completed. Since the old study of remaining oil distribution could not be quantified efficiently, the "dynamic two-step method" is presented. Firstly, the water cut of every flow unit in one well at one time is calculated according to the comprehensive water cut of a single well at one time. Secondly, the remaining oil saturation of the flow unit of the well at one time is calculated based on the water cut of the flow unit at a given time. The results show that "dynamic two-step method" has characteristics of simplicity and convenience, and is especially suitable for the study of remaining oil distribution at high water-cut stage. The distribution of remaining oil presented banding and potato form, remaining oil was relatively concentrated in faultage neighborhood and imperfect well netting position, and the net thickness of the place was great. This proposal can provide an effective way to forecast remaining oil distribution and enhance oil recovery, especially applied at the high water-cut stage. 展开更多
关键词 dynamic two-step method flow unit quantitative forecast remaining oil
下载PDF
Genesis of Micro Evolution and the Remaining Oil in the Reservoir
3
作者 Xu Shouyu Li Xueyan Sun Wanhua 《Petroleum Science》 SCIE CAS CSCD 2005年第4期14-19,共6页
Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destr... Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destroyed. The interaction between the fluid and the rock leads to a series of micro geological processes, such as clastation, denudation, dissolution and deposition, in the small spaces connected by pores or throats, which control the accumulation and distribution of the remaining oil. These micro geological processes are the essential factors for the evolution of the reservoirs during development. This evolution makes the recovery of the remaining oil more complex. 展开更多
关键词 RESERVOIR micro evolution of reservoir remaining oil Shengtuo oilfield delta reservoir
下载PDF
Mechanisms of remaining oil formation by water flooding and enhanced oil recovery by reversing water injection in fractured-vuggy reservoirs
4
作者 WANG Jing QI Xiangsheng +4 位作者 LIU Huiqing YANG Min LI Xiaobo LIU Hongguang ZHANG Tuozheng 《Petroleum Exploration and Development》 CSCD 2022年第5期1110-1125,共16页
To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D v... To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity. 展开更多
关键词 fractured-vuggy reservoir water flooding remaining oil reversing water injection stimulation mechanism enhanced oil recovery 3D printing
下载PDF
Micro-distribution and mechanical characteristics analysis of remaining oil 被引量:1
5
作者 Hongxia Sun Yujie Zhao Jun Yao 《Petroleum》 2017年第4期483-488,共6页
As the water drive reservoir enters extra high water cut stage(greater than 80%),remaining oil distribution becomes increasingly dispersed.Research on micro residual oil in pore appears particularly important for rese... As the water drive reservoir enters extra high water cut stage(greater than 80%),remaining oil distribution becomes increasingly dispersed.Research on micro residual oil in pore appears particularly important for reservoir development at extra high water cut stage.Oil occurrence characteristics recognition helps to understand the distribution of remaining oil and the mechanical characteristics of oil is the guide for tapping the remaining oil.On the basis of pore scale oil ewater two phase flow experiments,micro distribution of remaining oil is divided into four occurrence states in accordance with oil features at different stage of water flooding,the flake of remaining oil,oil column,oil droplet and oil film.A quantitative characterization method of remaining oil occurrence states is established.By using micro numerical simulation method,change rules of four occurrence states of remaining oil during the process of water displacement and the mechanical characteristics of different occurrence state of remaining oil are analyzed.Results show that the continuous oil phase gradually transforms to discontinuous phase and even to dispersed phases during the water flooding process.At extra high water cut stage,most of remaining oil are dispersed oil columns,oil droplets and oil films,which are the main target of remaining oil to be tapped.By changing water flow direction or increasing the displacement pressure gradient,the surface adsorption force acting on oil columns are overcome,and then the oil columns begin to move and finally to be produced out.Oil droplets in pore-throat center are scoured and carried out by water as the increase of the injection volume,while the oil droplets in blind ends and the oil films are extracted out by adding chemicals to reduce the interfacial tension,so as to enhance oil recovery.For water flooding reservoir,the corresponding tapping measures for four types of oil occurrence states brought forward have great meanings of improving reservoir recovery at high water cut stage. 展开更多
关键词 Pore scale remaining oil Occurrence characteristics Mechanical characteristics Extra high water cut stage
原文传递
The effect of interbeds on distribution of i ncremental oil displaced by a polymer flood 被引量:3
6
作者 Hou Jian Du Qingjun +2 位作者 Lu Teng Zhou Kang Wang Rongrong 《Petroleum Science》 SCIE CAS CSCD 2011年第2期200-206,共7页
This paper discusses the effect of influencing factors on the distribution of incremental oil displaced by a polymer flood (extra-displaced oil) using numerical reservoir simulation. These factors include the locati... This paper discusses the effect of influencing factors on the distribution of incremental oil displaced by a polymer flood (extra-displaced oil) using numerical reservoir simulation. These factors include the location, area and permeability of a thin low-permeability interbed, and the perforation location relative to the interbed. Simulation results show the locations from where the incremental oil was displaced by the polymer solution. The interbed position from the oil formation top affects the location of extra-displaced oil. The interbed area has a slight influence on the whole shape of extra-displaced oil. Larger interbed area leads to higher partition extent of extra-displaced oil. Higher vertical permeability of interbeds contributes to worse partition extent of extra-displaced oil and the partition effect disappears if the ratio of vertical to horizontal permeability is more than 0.05. The perforation location relative to the interbed affects polymer displacement efficiency, and also has a significant effect on the distribution of extra-displaced oil in polymer flooding. 展开更多
关键词 Reservoir simulation polymer flooding interbed remaining oil distribution
下载PDF
Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs:karst fault system 被引量:1
7
作者 Zhao-Jie Song Meng Li +2 位作者 Chuang Zhao Yu-Long Yang Ji-Rui Hou 《Petroleum Science》 SCIE CAS CSCD 2020年第2期419-433,共15页
Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configurati... Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configuration.Many researchers conducted experiments for the observation of fluid flow and the evaluation of production performance,while most of their physical models were fabricated based on the probability distribution of fractures and caves in the reservoir.In this study,a two-dimensional physical model of the karst fault system was designed and fabricated based on the geological model of TK748 well group in the seventh block of the Tahe Oilfield.The fluid flow and production performance of primary gas flooding were discussed.Gas-assisted gravity flooding was firstly introduced to take full use of gas-oil gravity difference,and its feasibility in the karst fault system was examined.Experimental results showed that primary gas flooding created more flow paths and achieved a remarkable increment of oil recovery compared to water flooding.Gas injection at a lower location was recommended to delay gas breakthrough.Gas-assisted gravity flooding achieved more stable gas-displacing-oil because oil production was at a lower location,and thus,the oil recovery was further enhanced. 展开更多
关键词 Gas injection remaining oil Enhanced oil recovery Geology-based physical model Karst fault system
下载PDF
Oil Production Optimization by Means of a Combined“Plugging,Profile Control,and Flooding”Treatment:Analysis of Results Obtained Using Computer Tomography and Nuclear Magnetic Resonance 被引量:1
8
作者 Yanyue Li Changlong Liu +5 位作者 Wenbo Bao Baoqing Xue Peng Lv Nan Wang Hui Li Wenguo Ma 《Fluid Dynamics & Materials Processing》 EI 2022年第3期737-749,共13页
Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control... Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited. 展开更多
关键词 “Plugging profile control and flooding”measures computed tomography scan nuclear magnetic resonance remaining oil recovery ratio
下载PDF
The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs
9
作者 LIU Yikun WANG Fengjiao +8 位作者 WANG Yumei LI Binhui ZHANG Dong YANG Guang ZHI Jiqiang SUN Shuo WANG Xu DENG Qingjun XU He 《Petroleum Exploration and Development》 CSCD 2022年第4期864-873,共10页
Aiming at the technology of hydraulic fracturing assisted oil displacement which combines hydraulic fracturing,seepage and oil displacement,an experimental system of energy storage and flowback in fracturing assisted ... Aiming at the technology of hydraulic fracturing assisted oil displacement which combines hydraulic fracturing,seepage and oil displacement,an experimental system of energy storage and flowback in fracturing assisted oil displacement process has been developed and used to simulate the mechanism of percolation,energy storage,oil displacement and flowback of chemical agents in the whole process.The research shows that in hydraulic fracturing assisted oil displacement,the chemical agent could be directly pushed to the deeper area of the low and medium permeability reservoirs,avoiding the viscosity loss and adhesion retention of chemical agents near the pay zone;in addition,this technology could effectively enlarge the swept volume,improve the oil displacement efficiency,replenish formation energy,gather and exploit the scattered residual oil.For the reservoir with higher permeability,this measure takes effect fast,so to lower cost,and the high pressure hydraulic fracturing assisted oil displacement could be adopted directly.For the reservoir with lower permeability which is difficult to absorb water,hydraulic fracturing assisted oil displacement with surfactant should be adopted to reduce flow resistance of the reservoir and improve the water absorption capacity and development effect of the reservoir.The degree of formation energy deficit was the main factor affecting the effective swept range of chemical agents.Moreover,the larger the formation energy deficit was,the further the seepage distance of chemical agents was,accordingly,the larger the effective swept volume was,and the greater the increase of oil recovery was.Formation energy enhancement was the most important contribution to enhanced oil recovery(EOR),which was the key to EOR by the technology of hydraulic fracturing assisted oil displacement. 展开更多
关键词 hydraulic fracturing chemical flooding formation energy enhancement remaining oil distribution oil displacement mechanism enhancing oil recovery
下载PDF
Experimental characterization and mechanism of hydraulic pulsation waves driving microscopic residual oil
10
作者 WU Feipeng LI Na +6 位作者 YANG Wei CHEN Jiahao DING Bujie XIA Lei LIU Jing WANG Cong WANG Lushan 《Petroleum Exploration and Development》 CSCD 2022年第6期1411-1422,共12页
To clarify microscopic mechanisms of residual oil displacement by hydraulic pulsation wave,microscopic visualization experiments of hydraulic pulsation wave driving residual oil were carried out by using the microscop... To clarify microscopic mechanisms of residual oil displacement by hydraulic pulsation wave,microscopic visualization experiments of hydraulic pulsation wave driving residual oil were carried out by using the microscopic visualization device of pulsating water drive.For the four types of residual oil left in the reservoir after water flooding,i.e.membrane,column,cluster,and blind end residual oils,hydraulic pulsation waves broke the micro-equilibrium of the interface by disturbing the oil-water interface,so that the injected water invaded into and contacted with the remaining oil in small pores and blind holes,and the remaining oil was pushed or stripped to the mainstream channel by deformation superposition effect and then carried out by the injected water.In the displacement,the pulsation frequency mainly affected the cluster and blind end remaining oil,and the hydraulic pulsation wave with a frequency of about 1 Hz had the best effect in improving the recovery.The pulsation amplitude value mainly affected the membrane and column residual oil,and the larger the amplitude value,the more remaining oil the hydraulic pulsation wave would displace.The presence of low intensity continuous flow pressure and holding pressure end pressure promoted the concentration of pulsating energy and greatly improve the recovery of cluster residual oil.The rise in temperature made the hydraulic pulsation wave work better in displacing remaining oil,improving the efficiency of oil flooding. 展开更多
关键词 hydraulic pulsation wave microscopic remaining oil oil displacement mechanism disturbance of oil-water interface enhanced oil recovery
下载PDF
Automatic measurement of three-phase contact angles in pore throats based on digital images
11
作者 ZANG Chuanzhen WANG Lida +3 位作者 ZHOU Kaihu YU Fuwei JIANG Hanqiao LI Junjian 《Petroleum Exploration and Development》 SCIE 2023年第2期442-449,共8页
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood... With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil. 展开更多
关键词 microfluidic model water flooding experiment digital image processing three-phase contact angle measure-ment method flow regime of the remaining oil
下载PDF
Prediction of Interbeds Intercalated into Complex Heterogeneous Reservoirs at a High Water Cut Stage 被引量:8
12
作者 Hou Jiagen 《Petroleum Science》 SCIE CAS CSCD 2007年第3期26-30,共5页
The occurrence of interbeds in thick oil formations is one of the main reasons that cause the difference of remaining oil distribution. A quantitative method for predicting interbeds was proposed and the sedimentary o... The occurrence of interbeds in thick oil formations is one of the main reasons that cause the difference of remaining oil distribution. A quantitative method for predicting interbeds was proposed and the sedimentary origin and division criterion were demonstrated. The distribution of interbeds in different types of sedimentary sand bodies were predicted and analyzed by combining the theory of sedimentology and reservoir bed architectural-element analysis. The interbeds in a single well were recognized from high resolution well logs, and inter-well interbeds were predicted by using the methods of cyclothem correlation, physical properties trtmcation, and conditional simulation. Finally a 3-D model of interbed was built. Application to the Gudao Oilfield was successful. 展开更多
关键词 remaining oil interbed cyclothem correlation conditional simulation
下载PDF
Visualization of Water Plugging Displacement with Foam/Gel Flooding in Internally Heterogeneous Reservoirs 被引量:3
13
作者 Jialiang Zhang Shumei He +3 位作者 Tongjing Liu Tianlu Ni Jian Zhou Fang Huang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期931-946,共16页
During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at diff... During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages.In this study,two types of internally heterogeneous systems,i.e.,vertical and horizontal wells are investigated experimentally through a microscopic approach.The results show that plugging agent types have a greater impact on oil recovery than well types,and foam injection can enhance oil recovery more effectively than gel injection.Additionally,the injection sequence of plugging agents significantly affects oil displacement efficiency.Injecting gel after foam is more beneficial.According to the present results,the main formation mechanisms of remaining oil in each displacement stage are influenced by:capillary force,viscous force,inertial force,shear force,microscopic fingering&channeling. 展开更多
关键词 Microscopic visualization experiment internally heterogeneous reservoir remaining oil foam GEL
下载PDF
Integrating the geology, seismic attributes, and production of reservoirs to adjust interwell areas: A case from the Mangyshlak Basin of West Kazakhstan
14
作者 Arslan Zhumabekov Zhen Liu +2 位作者 Vasily Portnov Xiaodong Wei Xin Chen 《Applied Geophysics》 SCIE CSCD 2021年第3期420-430,434,共12页
Dynamic models of the seismic,geological,and flow characteristics of a reservoir are the main tool used to evaluate the potential of drilling new infill wells.Static geological models are mainly based on borehole data... Dynamic models of the seismic,geological,and flow characteristics of a reservoir are the main tool used to evaluate the potential of drilling new infill wells.Static geological models are mainly based on borehole data combined with dynamic analyses of production dynamics.They are used to determine the redevelopment of and adjustments to new drilling locations;however,such models rarely incorporate seismic data.Consequently,it is difficult to control the changes in geological models between wells,which results in the configuration of well positions and predicted results being less than ideal.To improve the development of adjusted areas in terms of their remaining oil contents,we developed a new integrated analysis that combines static sediment modelling,including microfacies analysis(among other reservoir and seismic properties),with production behaviours.Here,we illustrate this new process by(1)establishing favourable areas for static geological analysis;(2)studying well recompletion potential and the condition of non-producing wells;(3)conducting interwell analyses with seismic and sedimentary data;(4)identifying potential sites constrained by seismic and geological studies,as well as initial oilfield production;(5)providing suggestions in a new well development plan. 展开更多
关键词 Reservoir geological model sedimentary facies seismic attributes well development remaining oil
下载PDF
Prediction of new perforation intervals in a depleted reservoir to achieve the maximum productivity: A case study of PNN logging in a cased-well of an Iranian oil reservoir 被引量:1
15
作者 Saeed Zaker Shahab mohamadi nafchi +3 位作者 Mahdi Rastegarnia Soheila Bagheri Ali Sanati Amir Naghibi 《Petroleum》 CSCD 2020年第2期170-176,共7页
Pulsed neutron-neutron(PNN)logging is based on emitting neutrons into the near-wellbore zone and computing the neutron count decay due to scattering and capturing.The main application of this logging tool is to determ... Pulsed neutron-neutron(PNN)logging is based on emitting neutrons into the near-wellbore zone and computing the neutron count decay due to scattering and capturing.The main application of this logging tool is to determine the current oil saturation and to detect channeling in perforated and non-perforated intervals behind the casing.Correct interpretation of the results obtained from PNN logging enables engineers to predict new perforation intervals in depleted reservoirs.This study examines the application of PNN logging in a well located in one of Iranian oil reservoirs.The interpretation procedure is described step by step.The principle of the PNN logging and the specifications of the tool are discussed and the applications of PNN logging in evaluation of oil saturation,identification of water flooded zones and prediction of potential perforating zones are described.Channeling is also investigated between all layers,good and poor oil zones are characterized based on the calculated oil saturations and new perforation intervals are suggested with the aim to boost oil production from the reservoir.The results of this study show that zones 1 to 5 having low oil saturations,are interpreted as depleted oil zones.Zones 6 to 8 are interpreted as good oil zones having high potential to produce oil.Zone 9 is interpreted as a water zone. 展开更多
关键词 Pulse neutron-neutron(PNN)logging Sigma value remaining oil saturation Conventional logging Perforation intervals Depleted reservoir
原文传递
Remaining useful life prediction based on the Wiener process for an aviation axial piston pump 被引量:30
16
作者 WangXingjian LinSiru +2 位作者 Wang Shaoping HeZhaomin ZhangChao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期779-788,共10页
An aviation hydraulic axial piston pump's degradation fiom comprehensive wear is a typical gradual failure model. Accurate wear prediction is difficult as random and uncertain char- acteristics must be factored into ... An aviation hydraulic axial piston pump's degradation fiom comprehensive wear is a typical gradual failure model. Accurate wear prediction is difficult as random and uncertain char- acteristics must be factored into the estimation. The internal wear status of the axial piston pump is characterized by the return oil flow based on fault mechanism analysis of the main frictional pairs in the pump. The performance degradation model is described by the Wiener process to predict the remaining useful life (RUL) of the pump. Maximum likelihood estimation (MLE) is performed by utilizing the expectation maximization (EM) algorithm to estimate the initial parameters of the Wiener process while recursive estimation is conducted utilizing the Kalman filter method to estimate the drift coefficient of the Wiener process. The RUL of the pump is then calculated accord- ing to the performance degradation model based on the Wiener process. Experimental results indi- cate that the return oil flow is a suitable characteristic for reflecting the internal wear status of the axial piston pump, and thus the Wiener process-based method may effectively predicate the RUL of the pump. 展开更多
关键词 Axial piston pump Hydraulic system remaining useful lifeReturn oil flow WEAR Wiener process
原文传递
Two new types of sandbars in channels of the modern Ganjiang Delta,Poyang Lake,China:Depositional characteristics and origin 被引量:3
17
作者 Zhen-Kui Jin Bai-Shui Gao +4 位作者 Jin-Yi Wang Yan Li Liang Shi Kuan-Hong Yu Gui-Zai Li 《Journal of Palaeogeography》 SCIE CSCD 2017年第2期132-143,共12页
Two new types of sandbars are found in distributary channels of the modern Ganjiang Delta,Poyang Lake,China,respectively named as branching-point bar(BPB) and merging-point bar(MPB).BPB is defined as sandbar formed at... Two new types of sandbars are found in distributary channels of the modern Ganjiang Delta,Poyang Lake,China,respectively named as branching-point bar(BPB) and merging-point bar(MPB).BPB is defined as sandbar formed at the branching point of a channel where one channel branches into two.MPB is defined as sandbar formed at the merging point of two channels.BPB results from current velocity decrease at the branching point.BPB,arrowhead-shaped and growing towards upstream through upstream accretion,can be divided into bar head,middle and tail.Bar head refers to the lower part of the bar below average low water level,submerges under water whether in rainy seasons or dry seasons,and no plants grow on it.Bar middle refers to the middle part of the bar between average low and average high water levels,and sparse plants grow on it.Bar tail refers to the upper part of the bar above average high water level,and plants grow densely on it.From bar head to bar tail,sediment becomes finer and sorting degree becomes poorer;plant fossils increase in number,and silting-mud layers increase both in number and thickness.Vertically BPB shows a fining-upward sequence.BPB can be classified into 3 types:baby BPB with only bar head,child BPB with bar head and middle,and adult BPB with bar head,middle and tail.Generally from the lower delta plain to upper delta plain,BPB becomes more and more mature.If a channel is suddenly abandoned,BPB at different stages may be preserved.MPB is very similar to BPB in depositional characteristics,and main differences lie in its origin and growth direction.Discovery of BPB and MPB has important implications in finding remaining oil in oilfields.Previously,geologists considered point bars on convex bank of meandering channels or longitudinal bars and transverse bars in the middle of braided channels as favorable locations for finding remaining oil.Our study shows such locations as branching points and merging points of channels are also significant because BPB and MPB develop at these locations.Remaining oil has been found at branching points of channels in Pubei Oilfield,Songliao Basin,Northeast China. 展开更多
关键词 Branching-point bar Merging-point bar Distributary channel Ganjiang Delta Poyang Lake remaining oil
原文传递
Stratigraphic Framework and Microfacies of the Triassic Lower Karamay Formation in Districts Ⅰ,Ⅲ, NW Junggar, China 被引量:1
18
作者 Miao He Zhenkui Jin +2 位作者 Tingdong Li Xiujuan Guo Ting Yang 《Journal of Earth Science》 SCIE CAS CSCD 2014年第6期1003-1017,共15页
The Triassic Lower Karamay Formation(T2k1) is one of the main oil-bearing stratigraphic units in the northwestern margin of Junggar Basin(NW Junggar), China. Based on an integrated investigation of outcrops, well ... The Triassic Lower Karamay Formation(T2k1) is one of the main oil-bearing stratigraphic units in the northwestern margin of Junggar Basin(NW Junggar), China. Based on an integrated investigation of outcrops, well logs and seismic data of NW Junggar, the Lower Karamay Formation is subdivided into 2 sets, 6 beds and 13 layers. Also, it is considered that the alluvial fan, the braided river, the meandering river and the shore-shallow lacustrine were developed during the early period of Middle Triassic in Karamay districts Ⅰ, Ⅲ. The Lower Karamay Formation deposits the following 9 sedimentary subfacies: the lower fan, the middle fan, the upper fan, the braided channel, the overflow bank, the river flood of braided river, the meandering channel, the river flood of meandering river, the shore-shallow lacustrine. Seventeen microfacies such as the braided stream channel, the alluvial sand floodplain, the alluvial glutenite floodplain, the water channel, the channel bar etc. have been identified in subfacies as well. The thickness of strata is firstly up-thinning and then thickening upward to the top, it is a process from large-scale lacustrine transgression to partly lacustrine regression. Furthermore, the microfacies planar distributing law proves that the remaining oil may enrich along the margin of microfacies because of the planar microfacies changes. Therefore, this research is beneficial for searching remaining oil in NW Junggar and providing information to the project "The Secondary Exploration" of PetroChina. 展开更多
关键词 stratigraphy microfacies Triassic alluvial fan sand body remaining oil Karamay Junggar
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部