REMIX燃料是利用乏燃料后处理中回收的未分离铀、钚混合物直接生产而成的。REMIX乏燃料可以重新回收利用,形成闭式循环,从而减少放射性废物的产生量。本文旨在讨论REMIX燃料组件在CPR1000型反应堆中的适用性,计算采用SCIENCE V2程序包,...REMIX燃料是利用乏燃料后处理中回收的未分离铀、钚混合物直接生产而成的。REMIX乏燃料可以重新回收利用,形成闭式循环,从而减少放射性废物的产生量。本文旨在讨论REMIX燃料组件在CPR1000型反应堆中的适用性,计算采用SCIENCE V2程序包,基于CPR1000型核反应堆18个月换料设计,全堆芯使用REMIX燃料进行平衡循环燃料管理方案设计,并将通用核数据和关键中子学参数与工程设计限值进行了对比。结果显示,REMIX堆芯燃料管理方案能够满足堆芯各项核设计参数安全限值与设计限值,其各项关键中子学参数能被当前UO2堆芯的安全分析限值所包络。本文从核设计的角度初步论证了REMIX燃料在CPR1000机组中应用的可行性。REMIX fuel is produced directly from a mixture of the unseparated uranium and plutonium recovered from spent fuel reprocessing. REMIX spent fuel can be recycled to form a closed loop, thus reducing the quantity of radioactive waste generated. The purpose of this article is to discuss the feasibility of REMIX fuel compositions in CPR1000 reactor. The calculations are practiced with SCIENCE V2 Package, based on an 18-month refueling design of CPR1000 nuclear reactor with a balanced-cycle full management scheme design using REMIX fuel for the entire core. The general nuclear data and key neutronic parameters are compared to the engineering design limits. The results show that the REMIX core fuel management scheme is able to meet the safety and design limits for all nuclear design parameters of the core, and its key neutronic parameters can be enveloped by the current safety analysis limits applied for UO2 fuel. This paper preliminarily demonstrates the feasibility of applying REMIX fuel in CPR1000 units in terms of nuclear design.展开更多
为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离...为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离成2种纯工质,分别进入气液热交换器两空间进行气液换热,再对纯工质压缩、混合再利用。以120℃地热水为热源,R134a/R245fa为工质,建立热力、经济与环境性能模型,分析R134a质量分数对系统综合性能的影响,并与采用R134a的乏气压缩再循环ORC系统(compression recycling,CR-ORC)性能进行对比。采用遗传算法进行多目标优化,揭示系统最优性能与工况参数。结果表明:与CR-ORC系统相比,非共沸工质SCRM-ORC系统可有效降低冷凝热的释放量,在R134a质量分数较低时提高冷凝热回收利用量,同时具有较好的综合性能。将分凝器与气液热交换器看作整体与CR-ORC系统中新型冷凝器相比,二者[火用]损失之和与投资成本之和小于CR-ORC系统中冷凝器的。在R134a质量分数为0.2181时,系统综合性能最优,此时净输出功为3412.1kW,投资回收期为2.237年,年当量CO_(2)减排量为4520.6×10^(3)kg。展开更多
文摘REMIX燃料是利用乏燃料后处理中回收的未分离铀、钚混合物直接生产而成的。REMIX乏燃料可以重新回收利用,形成闭式循环,从而减少放射性废物的产生量。本文旨在讨论REMIX燃料组件在CPR1000型反应堆中的适用性,计算采用SCIENCE V2程序包,基于CPR1000型核反应堆18个月换料设计,全堆芯使用REMIX燃料进行平衡循环燃料管理方案设计,并将通用核数据和关键中子学参数与工程设计限值进行了对比。结果显示,REMIX堆芯燃料管理方案能够满足堆芯各项核设计参数安全限值与设计限值,其各项关键中子学参数能被当前UO2堆芯的安全分析限值所包络。本文从核设计的角度初步论证了REMIX燃料在CPR1000机组中应用的可行性。REMIX fuel is produced directly from a mixture of the unseparated uranium and plutonium recovered from spent fuel reprocessing. REMIX spent fuel can be recycled to form a closed loop, thus reducing the quantity of radioactive waste generated. The purpose of this article is to discuss the feasibility of REMIX fuel compositions in CPR1000 reactor. The calculations are practiced with SCIENCE V2 Package, based on an 18-month refueling design of CPR1000 nuclear reactor with a balanced-cycle full management scheme design using REMIX fuel for the entire core. The general nuclear data and key neutronic parameters are compared to the engineering design limits. The results show that the REMIX core fuel management scheme is able to meet the safety and design limits for all nuclear design parameters of the core, and its key neutronic parameters can be enveloped by the current safety analysis limits applied for UO2 fuel. This paper preliminarily demonstrates the feasibility of applying REMIX fuel in CPR1000 units in terms of nuclear design.
文摘为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离成2种纯工质,分别进入气液热交换器两空间进行气液换热,再对纯工质压缩、混合再利用。以120℃地热水为热源,R134a/R245fa为工质,建立热力、经济与环境性能模型,分析R134a质量分数对系统综合性能的影响,并与采用R134a的乏气压缩再循环ORC系统(compression recycling,CR-ORC)性能进行对比。采用遗传算法进行多目标优化,揭示系统最优性能与工况参数。结果表明:与CR-ORC系统相比,非共沸工质SCRM-ORC系统可有效降低冷凝热的释放量,在R134a质量分数较低时提高冷凝热回收利用量,同时具有较好的综合性能。将分凝器与气液热交换器看作整体与CR-ORC系统中新型冷凝器相比,二者[火用]损失之和与投资成本之和小于CR-ORC系统中冷凝器的。在R134a质量分数为0.2181时,系统综合性能最优,此时净输出功为3412.1kW,投资回收期为2.237年,年当量CO_(2)减排量为4520.6×10^(3)kg。