Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce...Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.展开更多
Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measureme...Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measurement system of a π-phase shifted Distributed feedback (DFB) fiber laser is introduced. An all-fiberized configuration Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped DFB fiber laser was used as light source, in which an active π-phase shifted fiber Bragg grating (FBG) was wrote on Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped fiber. Using this, it can easily get a single-mode lasing with narrow linewidth. Experimental results demonstrate that the amplitude of vibration can be achieved down to λ/5 without any modulation parts while utilizing the reflecting mirror. It is in good agreement with the theoretical analysis and very helpful in proving sensitivity and stability of the measurement system. In addition, remote vibration measurement with a distance of 20 km is also realized with this system.展开更多
In this paper, we propose a Fresnel reflection-based optical fiber sensor system for remote refractive index measurement using the optical time domain reflectometry technique as an interrogation method. The surroundin...In this paper, we propose a Fresnel reflection-based optical fiber sensor system for remote refractive index measurement using the optical time domain reflectometry technique as an interrogation method. The surrounding refractive index from a long distance away can be measured easily by using this sensor system, which operates based on testing the Fresnel reflection intensity from the fiber-sample interface. This system is a simple configuration, which is easy to handle. Experimental results showed that the range of this measurement could reach about 100.8km, and the refractive index sensitivities were from 38.71 dB/RIU to 304.89 dB/RIU in the refractive index (RI) range from 1.3486 to 1.4525.展开更多
The objective of authors' study was to assess the effect of using the remote Tangent Galvanometer experiment on teaching and leaming physics in high-school classes. The idea was to understand how the remote experimen...The objective of authors' study was to assess the effect of using the remote Tangent Galvanometer experiment on teaching and leaming physics in high-school classes. The idea was to understand how the remote experiment can contribute to understanding scientific concepts of high school students, specifically in physics. Five public high-schools located in the urban area of Guaratingueta were selected for our pilot test. Only one of the schools has a science laboratory, which is often not used due to the shortage of appropriate material for experiments. However, all five schools have computer labs with internet access. Authors worked with a total of 335 students from five schools. Authors' pilot test began with theoretical classes, related to the experiment, given by the teachers of each school: Concept of Magnetic Induction Field and the Biot-Savart Law. The classes were followed by a pre-test. After applying the pre-test, the students accessed the experimental activity via Interact remote access in the computer lab. At the end of the experimental activity, the students completed the multiple choice post-tests. All students completed the post-tests. The pre-test and post-test analysis has been used as an assessment method in education and social sciences.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
The ability of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for flooding and soil wetness detection has been demonstrated in this study.On the basis of TMI measurements,four methods,the classi...The ability of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for flooding and soil wetness detection has been demonstrated in this study.On the basis of TMI measurements,four methods,the classification method,the soil wetness index (SWI) method. the polarization difference index (PDI) method,and the polarization ratio index (PRI) method, were brought out to monitor flooding and study soil wetness in the Changjiang and Huaihe River Basins during the summer 1998.Compared with the images provided by L-band Synthetic Aperture Radar (L-SAR) and Radar Satellite (Radarsat) and the figures derived from daily rainfall data based on the Z-index method,the detection of flooding and soil wetness by TMI was proved to be feasible.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 083H311501)the National High Technology Research and Development Program of China (Grant No 073H3f1514)
文摘Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.
文摘Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measurement system of a π-phase shifted Distributed feedback (DFB) fiber laser is introduced. An all-fiberized configuration Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped DFB fiber laser was used as light source, in which an active π-phase shifted fiber Bragg grating (FBG) was wrote on Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped fiber. Using this, it can easily get a single-mode lasing with narrow linewidth. Experimental results demonstrate that the amplitude of vibration can be achieved down to λ/5 without any modulation parts while utilizing the reflecting mirror. It is in good agreement with the theoretical analysis and very helpful in proving sensitivity and stability of the measurement system. In addition, remote vibration measurement with a distance of 20 km is also realized with this system.
文摘In this paper, we propose a Fresnel reflection-based optical fiber sensor system for remote refractive index measurement using the optical time domain reflectometry technique as an interrogation method. The surrounding refractive index from a long distance away can be measured easily by using this sensor system, which operates based on testing the Fresnel reflection intensity from the fiber-sample interface. This system is a simple configuration, which is easy to handle. Experimental results showed that the range of this measurement could reach about 100.8km, and the refractive index sensitivities were from 38.71 dB/RIU to 304.89 dB/RIU in the refractive index (RI) range from 1.3486 to 1.4525.
文摘The objective of authors' study was to assess the effect of using the remote Tangent Galvanometer experiment on teaching and leaming physics in high-school classes. The idea was to understand how the remote experiment can contribute to understanding scientific concepts of high school students, specifically in physics. Five public high-schools located in the urban area of Guaratingueta were selected for our pilot test. Only one of the schools has a science laboratory, which is often not used due to the shortage of appropriate material for experiments. However, all five schools have computer labs with internet access. Authors worked with a total of 335 students from five schools. Authors' pilot test began with theoretical classes, related to the experiment, given by the teachers of each school: Concept of Magnetic Induction Field and the Biot-Savart Law. The classes were followed by a pre-test. After applying the pre-test, the students accessed the experimental activity via Interact remote access in the computer lab. At the end of the experimental activity, the students completed the multiple choice post-tests. All students completed the post-tests. The pre-test and post-test analysis has been used as an assessment method in education and social sciences.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金the National Key Program of Science and Technology of China (2001BA610A-06-05)the National Natural Science Foundation of China (40375001)the Science Foundation of China Meteorological Administration and Jilin Provincial Government Joint Laboratory for Weather Modification
文摘The ability of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for flooding and soil wetness detection has been demonstrated in this study.On the basis of TMI measurements,four methods,the classification method,the soil wetness index (SWI) method. the polarization difference index (PDI) method,and the polarization ratio index (PRI) method, were brought out to monitor flooding and study soil wetness in the Changjiang and Huaihe River Basins during the summer 1998.Compared with the images provided by L-band Synthetic Aperture Radar (L-SAR) and Radar Satellite (Radarsat) and the figures derived from daily rainfall data based on the Z-index method,the detection of flooding and soil wetness by TMI was proved to be feasible.