An evaluation model divided landslide hazard degrees in Wanzhou District of Three Gorges Reservoir Area. The model was established by GIS techniques and took land use/cover, stratum characters, slope aspect, slope gra...An evaluation model divided landslide hazard degrees in Wanzhou District of Three Gorges Reservoir Area. The model was established by GIS techniques and took land use/cover, stratum characters, slope aspect, slope gradient, elevation difference and slope shape as evaluation factors. The data of land use/cover were obtained by remote sensing, and the weights of the factors mentioned above were established by the analytic hierarchy process (AHP). The results indicate, low danger areas in the studied area account for 66.51%, and high danger areas and very high danger areas occupy 1/3 of the total area. The regions of high and very high danger are mainly located around the urban area of Wanzhou District and on the banks of the Yangtze River with a relatively large area, where collapse and landslide directly threats densely populated areas and Three Gorges Reservoir. Slope destabilization, if occurs, will bring huge loss to social economy. All research results are consistent with the actual conditions; therefore, they can be regarded as a useful basis for planning and constructing of the reservoir area.展开更多
One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enha...One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enhanced Thematic Mapper) image and the National Oceanic and Atmospheric Administration/the advanced very high resolution radiometer (NOAA/AVHRR) image were integrated to detect, simulate and analyze the vegetation fractional coverage of typical steppe in northern China. The results show: (1) Vegetation fractional coverage measured by digital camera is more precise than results measured by other methods. It can be used to validate other measuring results. (2) Vegetation fractional coverage measured by 1 m 2 field sample change fluctuantly for different observers and for different sample areas. In this experiment, the coverage is generally high compared with the result measured by digital camera, and the average absolute error is 9.92%, but two groups measure results, correlation coefficient r(2) = 0.89. (3) Three kinds of methods using remotely sensed data were adopted to simulate the vegetation fractional coverage. Average absolute errors of the vegetation fractional coverage, measured by ETM+ and NOAA, are respectively 7.03% and 7.83% compared with the result measured by digital camera. When NOAA pixel was decomposed by ETM+ pixels after geometrical registry, the average absolute errors measured by this method is 5.68% compared with the digital camera result. Correction coefficients of three results with digital camera result r(2) are respectively 0.78, 0.61 and 0.76. (4) The result of statistic model established by NOAA-NDVI (NDVI, Normalized Difference Vegetation Index) and the vegetation fractional coverage measured by digital camera show lower precision (r(2) = 0.65) than the result of statistic model established by ETM+-NDVI and digital camera coverage then converted to NOAA image (r(2) = 0.80). Pixel decomposability method improves the precision of measuring the vegetation fractional coverage on a large scale. This is a significant practice on scaling by using remotely sensed data. Integrated application of multi-scale remotely sensed data in earth observation will be an important approach to promoting measuring precision of ecological parameters.展开更多
A comprehensive method of image classification was developed for monitoring land use dynamics in Chanthaburi Province of Tailand. RS (Remote Sensing), GIS (Geographical Information System), GPS (Global Positioning Sys...A comprehensive method of image classification was developed for monitoring land use dynamics in Chanthaburi Province of Tailand. RS (Remote Sensing), GIS (Geographical Information System), GPS (Global Positioning System) and ancillary data were combined by the method which adopts the main idea of classifying images by steps from decision tree method and the hybridized supervised and unsupervised classification. An integration of automatic image interpretation, ancillary materials and expert knowledge was realized. Two subscenes of Landsat 5 Thematic Mapper (TM) images of bands 3, 4 and 5 obtained on December 15, 1992, and January 17, 1999, were used for image processing and spatial data analysis in the study. The overall accuracy of the results of classification reached 90%, which was verified by field check.Results showed that shrimp farm land, urban and traffic land, barren land, bush and agricultural developing area increased in area, mangrove, paddy field, swamp and marsh land, orchard and plantation, and tropical grass land decreased, and the forest land kept almost stable. Ecological analysis on the land use changes showed that more attentions should be paid on the effect of land development on ecological environment in the future land planning and management.展开更多
Early crop yield forecasting is important for food safety as well as large-scale food related planning. The phenology-adjusted spectral indices derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data...Early crop yield forecasting is important for food safety as well as large-scale food related planning. The phenology-adjusted spectral indices derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to develop liner regression models with the county-level corn yield data in Northeast China. We also compared the different spectral indices in predicting yield. The results showed that, using Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI) and Land Surface Water Index (LSWI), the best time to predict corn yields was 55-60 days after green-up date. LSWI showed the strongest correlation (R2=0.568), followed by EVI (R2=0.497) and NDWI (R2=0.495). The peak correlation between Wide Dynamic Range Vegetation Index (WDRVI) and yield was detected 85 days after green-up date (RZ=0.506). The correlation was generally low for Normalized Difference Vegetation Index (NDVI) (R2=0.385) and no obvious peak correlation existed for NDVI. The coefficients of determination of the different spectral indices varied from year to year, which were greater in 2001 and 2004 than in other years. Leave-one-year-out approach was used to test the performance of the model. Normalized root mean square error (NRMSE) ranged from 7.3 to 16.9% for different spectral indices. Overall, our results showed that crop phenology-tuned spectral indices were feasible and helpful for regional corn yield forecasting.展开更多
With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remo...With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.展开更多
For the application of soil moisture and ocean salinity(SMOS) remotely sensed sea surface salinity(SSS) products,SMOS SSS global maps and error characteristics have been investigated based on quality control infor...For the application of soil moisture and ocean salinity(SMOS) remotely sensed sea surface salinity(SSS) products,SMOS SSS global maps and error characteristics have been investigated based on quality control information.The results show that the errors of SMOS SSS products are distributed zonally,i.e.,relatively small in the tropical oceans,but much greater in the southern oceans in the Southern Hemisphere(negative bias) and along the southern,northern and some other oceanic margins(positive or negative bias).The physical elements responsible for these errors include wind,temperature,and coastal terrain and so on.Errors in the southern oceans are due to the bias in an SSS retrieval algorithm caused by the coexisting high wind speed and low temperature; errors along the oceanic margins are due to the bias in a brightness temperature(TB) reconstruction caused by the high contrast between L-band emissivities from ice or land and from ocean; in addition,some other systematic errors are due to the bias in TB observation caused by a radio frequency interference and a radiometer receivers drift,etc.The findings will contribute to the scientific correction and appropriate application of the SMOS SSS products.展开更多
Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddi...Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddies and image itself, it is sometimes difficult to successfully detect ocean eddies using these methods. A mnltifractal filtering technology is proposed for extraction of ocean eddies and demonstrated using NASA MODIS, SeaWiFS and NOAA satellite data set in the typical area, such as ocean west boundary current. Results showed that the new method has a superior performance over the traditional methods.展开更多
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better unde...The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil.展开更多
This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional...This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.展开更多
This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy...This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.展开更多
An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the ...An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the input layer depends on the dimensionality of input patterns. The number of neurons in the output layer equals the number of the desired classes. The number of neurons in the Kohonen layer may be a few to several thousands, which depends on the complexity of classification problems and the classification precision. Each training sample is expressed by a pair of vectors : an input vector and a class codebook vector. When a training sample is input into the model, Kohonen's competitive learning rule is applied to selecting the winning neuron from the Kohouen layer and the weight coefficients connecting all the neurons in the input layer with both the winning neuron and its neighbors in the Kohonen layer are modified to be closer to the input vector, and those connecting all the neurons around the winning neuron within a certain diameter in the Kohonen layer with all the neurons in the output layer are adjusted to be closer to the class codebook vector. If the number of training sam- ples is sufficiently large and the learning epochs iterate enough times, the model will be able to serve as a supervised classifier. The model has been tentatively applied to the supervised classification of multispectral remotely sensed data. The author compared the performances of the extended SOM and BPN in remotely sensed data classification. The investigation manifests that the extended SOM is feasible for supervised classification.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictab...Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks.展开更多
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster...Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.展开更多
From the ecological viewpoint this paper discusses the urban spatial-temporal relationship. We take regional towns and cities as a complex man-land system of urban eco-community. This complex man-land system comprises...From the ecological viewpoint this paper discusses the urban spatial-temporal relationship. We take regional towns and cities as a complex man-land system of urban eco-community. This complex man-land system comprises two elements of ' man' and ' land' . Here, ' man' means organization with self-determined consciousness, and ' land' means the physical environment (niche) that ' man' depends on. The complex man-land system has three basic components. They are individual, population and community. Therefore there are six types of spatial relationship for the complex man-land system. They are individual, population,community,man-man, land-land and man-land spatial relationships. Taking the Pearl(Zhujiang) River Delta as a case study, the authors found some evidence of the urban spatial relationship from the remote sensing data. Firstly, the concentration and diffusion of the cities spatial relationship was found in the remote sensing imagery. Most of the cities concentrate in the core area of the Pearl River Delta, but the diffusion situation is also significant. Secondly, the growth behavior and succession behavior of the urban spatial relationship was found in the remote sensing images comparison with different temporal data. Thirdly, the inheritance, break, or meeting emergency behavior was observed from the remote sensing data. Fourthly, the authors found many cases of symbiosis and competition in the remote sensing data of the Pearl River Delta. Fifthly, the autoeciousness, stranglehold and invasion behavior of the urban spatial relationship was discovered from the remote sensing data.展开更多
The southwest coast of Sri Lanka is well-developed and densely-populated area. The change in coastal environment directly influences people's production and living conditions. The author has pursued a study on the...The southwest coast of Sri Lanka is well-developed and densely-populated area. The change in coastal environment directly influences people's production and living conditions. The author has pursued a study on the classification of coastal sections from Colombo to Tangalla and analyzed coastal erosion and protection, inundation of low-lying areas based on landsat images and airphotos. This paper deals with remote sensing approaches to coastal zone monitoring and puts forward suggestions which might be of important consulting value of planning, decision-making and management of coastal zones in Sri Lanka.展开更多
We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-r...We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.展开更多
In order to minimise the bushfires negative impacts on society, an efficient andreliable bushfire detection system was proposed to assess the devastated effects of the2009 Victorian bushfires.It is possible to utilise...In order to minimise the bushfires negative impacts on society, an efficient andreliable bushfire detection system was proposed to assess the devastated effects of the2009 Victorian bushfires.It is possible to utilise the repetitive capability of satellite remotesensing imagery to identify the location of change to the Earth's surface and integrate thedifferent remotely sensed indices.The results confirm that the procedure can offer essentialspatial information for bushfire assessment.展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
The land-cover dynamics has been quite conspicuous over the last three decades in Dehdez area, Iran. Therefore, the present study was undertaken in the Dehdez area to assess the trends of rangelands dynamics in the st...The land-cover dynamics has been quite conspicuous over the last three decades in Dehdez area, Iran. Therefore, the present study was undertaken in the Dehdez area to assess the trends of rangelands dynamics in the study area during the period 1990-2006. Two clear, cloud-free Landsat and one ASTER images were selected to classify the study area. All images were rectified to UTM zone 39, WGS84 using at least 25 well distributed ground control points and nearest neighbor resampling. Land-use/cover mapping is achieved through interpretation of Landsat TM satellite images of 1990, 1998 and ASTER image of 2006. Fieldwork was carried out to collect data for training and validating land-use/cover interpretation from satellite image of 2006, and for qualitative description of the characteristics of each land-use/cover class. In order to create a testing sample set, first of all, a set of testing points was selected randomly. A supervised classification technique with Maximum Likelihood Algorithm was applied based on 48 training samples for the image of 2006, and 42 samples for the images of 1990 and 1998 and the land-use/cover maps were produced. Error matrices were used to assess classification accuracy. The results showed rangeland covers about 30.8%, 36.7% and 45% of the total geographical area of the Dehdez area in 1990, 1998 and 2006, respectively. Overall accuracies of land-use/cover classification for 1990, 1998 and 2006 were 89.37%, 75.24% and 71.14%, respectively. Kappa values obtained were of 78.71%, 55.61% and 51.41% of accuracy for the 1990, 1998 and 2006, respectively. During 16 years span period (1990-2006) about 1738.4 ha, 383.7 ha, 32.8 ha and 890.1 ha of rangelands were converted to forest, agriculture, water and settlement. The total rich rangelands in the area, accounted for 38.5%, 44% and 42.2% in 1990, 1998 and 2006, respectively. The total poor rangeland in the area accounted for 61.5%, 56% and 57.8% in 1990, 1998 and 2006, respectively. Satellite Remote Sensing enabled the generation of a detailed rangeland map and the separation of grazing intensity levels in rangelands could be generated with the relatively little effort in areas that were difficult to access.展开更多
文摘An evaluation model divided landslide hazard degrees in Wanzhou District of Three Gorges Reservoir Area. The model was established by GIS techniques and took land use/cover, stratum characters, slope aspect, slope gradient, elevation difference and slope shape as evaluation factors. The data of land use/cover were obtained by remote sensing, and the weights of the factors mentioned above were established by the analytic hierarchy process (AHP). The results indicate, low danger areas in the studied area account for 66.51%, and high danger areas and very high danger areas occupy 1/3 of the total area. The regions of high and very high danger are mainly located around the urban area of Wanzhou District and on the banks of the Yangtze River with a relatively large area, where collapse and landslide directly threats densely populated areas and Three Gorges Reservoir. Slope destabilization, if occurs, will bring huge loss to social economy. All research results are consistent with the actual conditions; therefore, they can be regarded as a useful basis for planning and constructing of the reservoir area.
文摘One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enhanced Thematic Mapper) image and the National Oceanic and Atmospheric Administration/the advanced very high resolution radiometer (NOAA/AVHRR) image were integrated to detect, simulate and analyze the vegetation fractional coverage of typical steppe in northern China. The results show: (1) Vegetation fractional coverage measured by digital camera is more precise than results measured by other methods. It can be used to validate other measuring results. (2) Vegetation fractional coverage measured by 1 m 2 field sample change fluctuantly for different observers and for different sample areas. In this experiment, the coverage is generally high compared with the result measured by digital camera, and the average absolute error is 9.92%, but two groups measure results, correlation coefficient r(2) = 0.89. (3) Three kinds of methods using remotely sensed data were adopted to simulate the vegetation fractional coverage. Average absolute errors of the vegetation fractional coverage, measured by ETM+ and NOAA, are respectively 7.03% and 7.83% compared with the result measured by digital camera. When NOAA pixel was decomposed by ETM+ pixels after geometrical registry, the average absolute errors measured by this method is 5.68% compared with the digital camera result. Correction coefficients of three results with digital camera result r(2) are respectively 0.78, 0.61 and 0.76. (4) The result of statistic model established by NOAA-NDVI (NDVI, Normalized Difference Vegetation Index) and the vegetation fractional coverage measured by digital camera show lower precision (r(2) = 0.65) than the result of statistic model established by ETM+-NDVI and digital camera coverage then converted to NOAA image (r(2) = 0.80). Pixel decomposability method improves the precision of measuring the vegetation fractional coverage on a large scale. This is a significant practice on scaling by using remotely sensed data. Integrated application of multi-scale remotely sensed data in earth observation will be an important approach to promoting measuring precision of ecological parameters.
基金Project supported by the Tingthanathikul Foundation of Thailand, the Provincial Natural Science Foun- dation of Jiangxi (No. 0230025) the Open Research Foundation of Hubei Provincial Key Labaratory of Waterlogged Disaster and Wetland Agriculture (No. H
文摘A comprehensive method of image classification was developed for monitoring land use dynamics in Chanthaburi Province of Tailand. RS (Remote Sensing), GIS (Geographical Information System), GPS (Global Positioning System) and ancillary data were combined by the method which adopts the main idea of classifying images by steps from decision tree method and the hybridized supervised and unsupervised classification. An integration of automatic image interpretation, ancillary materials and expert knowledge was realized. Two subscenes of Landsat 5 Thematic Mapper (TM) images of bands 3, 4 and 5 obtained on December 15, 1992, and January 17, 1999, were used for image processing and spatial data analysis in the study. The overall accuracy of the results of classification reached 90%, which was verified by field check.Results showed that shrimp farm land, urban and traffic land, barren land, bush and agricultural developing area increased in area, mangrove, paddy field, swamp and marsh land, orchard and plantation, and tropical grass land decreased, and the forest land kept almost stable. Ecological analysis on the land use changes showed that more attentions should be paid on the effect of land development on ecological environment in the future land planning and management.
基金supported by the National Basic Research Program of China(2010CB950902)the National Natural Science Foundation of China(41371002)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05090310)
文摘Early crop yield forecasting is important for food safety as well as large-scale food related planning. The phenology-adjusted spectral indices derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to develop liner regression models with the county-level corn yield data in Northeast China. We also compared the different spectral indices in predicting yield. The results showed that, using Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI) and Land Surface Water Index (LSWI), the best time to predict corn yields was 55-60 days after green-up date. LSWI showed the strongest correlation (R2=0.568), followed by EVI (R2=0.497) and NDWI (R2=0.495). The peak correlation between Wide Dynamic Range Vegetation Index (WDRVI) and yield was detected 85 days after green-up date (RZ=0.506). The correlation was generally low for Normalized Difference Vegetation Index (NDVI) (R2=0.385) and no obvious peak correlation existed for NDVI. The coefficients of determination of the different spectral indices varied from year to year, which were greater in 2001 and 2004 than in other years. Leave-one-year-out approach was used to test the performance of the model. Normalized root mean square error (NRMSE) ranged from 7.3 to 16.9% for different spectral indices. Overall, our results showed that crop phenology-tuned spectral indices were feasible and helpful for regional corn yield forecasting.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301038), Talents Recruitment Foun-dation of Nanjing University
文摘With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.
基金The National Natural Science Fund of China under contact No.41276088the National Natural Science Fund for Young Scholars of China under contact Nos 41206002 and 41306010
文摘For the application of soil moisture and ocean salinity(SMOS) remotely sensed sea surface salinity(SSS) products,SMOS SSS global maps and error characteristics have been investigated based on quality control information.The results show that the errors of SMOS SSS products are distributed zonally,i.e.,relatively small in the tropical oceans,but much greater in the southern oceans in the Southern Hemisphere(negative bias) and along the southern,northern and some other oceanic margins(positive or negative bias).The physical elements responsible for these errors include wind,temperature,and coastal terrain and so on.Errors in the southern oceans are due to the bias in an SSS retrieval algorithm caused by the coexisting high wind speed and low temperature; errors along the oceanic margins are due to the bias in a brightness temperature(TB) reconstruction caused by the high contrast between L-band emissivities from ice or land and from ocean; in addition,some other systematic errors are due to the bias in TB observation caused by a radio frequency interference and a radiometer receivers drift,etc.The findings will contribute to the scientific correction and appropriate application of the SMOS SSS products.
文摘Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddies and image itself, it is sometimes difficult to successfully detect ocean eddies using these methods. A mnltifractal filtering technology is proposed for extraction of ocean eddies and demonstrated using NASA MODIS, SeaWiFS and NOAA satellite data set in the typical area, such as ocean west boundary current. Results showed that the new method has a superior performance over the traditional methods.
基金This work was supported by the National Key R&D Program of(Grant No.2016YFA0602302).
文摘The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil.
文摘This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.
文摘This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.
基金Supported by National Natural Science Foundation of China (No. 40872193)
文摘An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the input layer depends on the dimensionality of input patterns. The number of neurons in the output layer equals the number of the desired classes. The number of neurons in the Kohonen layer may be a few to several thousands, which depends on the complexity of classification problems and the classification precision. Each training sample is expressed by a pair of vectors : an input vector and a class codebook vector. When a training sample is input into the model, Kohonen's competitive learning rule is applied to selecting the winning neuron from the Kohouen layer and the weight coefficients connecting all the neurons in the input layer with both the winning neuron and its neighbors in the Kohonen layer are modified to be closer to the input vector, and those connecting all the neurons around the winning neuron within a certain diameter in the Kohonen layer with all the neurons in the output layer are adjusted to be closer to the class codebook vector. If the number of training sam- ples is sufficiently large and the learning epochs iterate enough times, the model will be able to serve as a supervised classifier. The model has been tentatively applied to the supervised classification of multispectral remotely sensed data. The author compared the performances of the extended SOM and BPN in remotely sensed data classification. The investigation manifests that the extended SOM is feasible for supervised classification.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金funded by the Gansu Provincial Science and Technology Program(22ZD6FA005)Gansu Postdoctoral Science Foundation(Grant number-E339880204)。
文摘Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks.
基金supported by the National Key Research and Development Program of China(2020YFC1512304).
文摘Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.
基金Under the auspices of the National Natural Science Foundation of China(No.69896250-4).
文摘From the ecological viewpoint this paper discusses the urban spatial-temporal relationship. We take regional towns and cities as a complex man-land system of urban eco-community. This complex man-land system comprises two elements of ' man' and ' land' . Here, ' man' means organization with self-determined consciousness, and ' land' means the physical environment (niche) that ' man' depends on. The complex man-land system has three basic components. They are individual, population and community. Therefore there are six types of spatial relationship for the complex man-land system. They are individual, population,community,man-man, land-land and man-land spatial relationships. Taking the Pearl(Zhujiang) River Delta as a case study, the authors found some evidence of the urban spatial relationship from the remote sensing data. Firstly, the concentration and diffusion of the cities spatial relationship was found in the remote sensing imagery. Most of the cities concentrate in the core area of the Pearl River Delta, but the diffusion situation is also significant. Secondly, the growth behavior and succession behavior of the urban spatial relationship was found in the remote sensing images comparison with different temporal data. Thirdly, the inheritance, break, or meeting emergency behavior was observed from the remote sensing data. Fourthly, the authors found many cases of symbiosis and competition in the remote sensing data of the Pearl River Delta. Fifthly, the autoeciousness, stranglehold and invasion behavior of the urban spatial relationship was discovered from the remote sensing data.
文摘The southwest coast of Sri Lanka is well-developed and densely-populated area. The change in coastal environment directly influences people's production and living conditions. The author has pursued a study on the classification of coastal sections from Colombo to Tangalla and analyzed coastal erosion and protection, inundation of low-lying areas based on landsat images and airphotos. This paper deals with remote sensing approaches to coastal zone monitoring and puts forward suggestions which might be of important consulting value of planning, decision-making and management of coastal zones in Sri Lanka.
文摘We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.
文摘In order to minimise the bushfires negative impacts on society, an efficient andreliable bushfire detection system was proposed to assess the devastated effects of the2009 Victorian bushfires.It is possible to utilise the repetitive capability of satellite remotesensing imagery to identify the location of change to the Earth's surface and integrate thedifferent remotely sensed indices.The results confirm that the procedure can offer essentialspatial information for bushfire assessment.
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.
文摘The land-cover dynamics has been quite conspicuous over the last three decades in Dehdez area, Iran. Therefore, the present study was undertaken in the Dehdez area to assess the trends of rangelands dynamics in the study area during the period 1990-2006. Two clear, cloud-free Landsat and one ASTER images were selected to classify the study area. All images were rectified to UTM zone 39, WGS84 using at least 25 well distributed ground control points and nearest neighbor resampling. Land-use/cover mapping is achieved through interpretation of Landsat TM satellite images of 1990, 1998 and ASTER image of 2006. Fieldwork was carried out to collect data for training and validating land-use/cover interpretation from satellite image of 2006, and for qualitative description of the characteristics of each land-use/cover class. In order to create a testing sample set, first of all, a set of testing points was selected randomly. A supervised classification technique with Maximum Likelihood Algorithm was applied based on 48 training samples for the image of 2006, and 42 samples for the images of 1990 and 1998 and the land-use/cover maps were produced. Error matrices were used to assess classification accuracy. The results showed rangeland covers about 30.8%, 36.7% and 45% of the total geographical area of the Dehdez area in 1990, 1998 and 2006, respectively. Overall accuracies of land-use/cover classification for 1990, 1998 and 2006 were 89.37%, 75.24% and 71.14%, respectively. Kappa values obtained were of 78.71%, 55.61% and 51.41% of accuracy for the 1990, 1998 and 2006, respectively. During 16 years span period (1990-2006) about 1738.4 ha, 383.7 ha, 32.8 ha and 890.1 ha of rangelands were converted to forest, agriculture, water and settlement. The total rich rangelands in the area, accounted for 38.5%, 44% and 42.2% in 1990, 1998 and 2006, respectively. The total poor rangeland in the area accounted for 61.5%, 56% and 57.8% in 1990, 1998 and 2006, respectively. Satellite Remote Sensing enabled the generation of a detailed rangeland map and the separation of grazing intensity levels in rangelands could be generated with the relatively little effort in areas that were difficult to access.