This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the sur...This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi_spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.展开更多
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over...These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.展开更多
The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote ...The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote imaging data of large scale and cross-time, due to the increase of remote image quantities and image resolutions. In the paper, the genetic algorithms were employed to solve the weighting of the radial basis faction networks in order to improve the precision of remote sensing image classification. The remote sensing image classification was also introduced for the GIS spatial analysis and the spatial online analytical processing (OLAP), and the resulted effectiveness was demonstrated in the analysis of land utilization variation of Daqing city.展开更多
In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the re...In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the realm of remote sensing images(RSIs),existing KD research studies are not only scarce but also lack competitiveness.This issue significantly impedes the deployment of the notable advantages of ViTs and CNNs.To tackle this,the authors introduce a novel hybrid‐model KD approach named HMKD‐Net,which comprises a CNN‐ViT ensemble teacher and a CNN student.Contrary to popular opinion,the authors posit that the sparsity in RSI data distribution limits the effectiveness and efficiency of hybrid‐model knowledge transfer.As a solution,a simple yet innovative method to handle variances during the KD phase is suggested,leading to substantial enhancements in the effectiveness and efficiency of hybrid knowledge transfer.The authors assessed the performance of HMKD‐Net on three RSI datasets.The findings indicate that HMKD‐Net significantly outperforms other cuttingedge methods while maintaining a significantly smaller size.Specifically,HMKD‐Net exceeds other KD‐based methods with a maximum accuracy improvement of 22.8%across various datasets.As ablation experiments indicated,HMKD‐Net has cut down on time expenses by about 80%in the KD process.This research study validates that the hybrid‐model KD technique can be more effective and efficient if the data distribution sparsity in RSIs is well handled.展开更多
Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic alg...Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic algorithm with resampling method is adopted to obtain reducts with good generalization ability. Second, Multiple BP neural networks based on different reducts are built as base classifiers. According to the idea of selective ensemble, the neural network ensemble with best generalization ability can be found by search strategies. Finally, classification based on neural network ensemble is implemented by combining the predictions of component networks with voting. The method has been verified in the experiment of remote sensing image and five UCI datasets classification. Compared with conventional ensemble feature selection algorithms, it costs less time and lower computing complexity, and the classification accuracy is satisfactory.展开更多
Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neur...Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neural network was provided for perceiving large-scale urban change,by modifying network structure and updating network strategy to extract richer feature information,and to meet the requirement of urban construction land extraction under the background of large-scale low-resolution image.This paper takes the Yangtze River Economic Belt of China as an empirical object to verify the practicability of the network,the results show the extraction results of the improved fully convolutional neural network model reached a precision of kappa coefficient of 0.88,which is better than traditional fully convolutional neural networks,it performs well in the construction land extraction at the scale of small and medium-sized cities.展开更多
文摘This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi_spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.
基金Supported by the National High Technology Research and Development Programme (No.2007AA12Z227) and the National Natural Science Foundation of China (No.40701146).
文摘These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.
基金Sponsored by the National Natural Science Foundation of China (Grant No.40271044), Natural Science Foundation(Grant No.TK2005 -17) and Projectof Science Backbone of Heilongjiang Province(Grant No.1151G021).
文摘The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote imaging data of large scale and cross-time, due to the increase of remote image quantities and image resolutions. In the paper, the genetic algorithms were employed to solve the weighting of the radial basis faction networks in order to improve the precision of remote sensing image classification. The remote sensing image classification was also introduced for the GIS spatial analysis and the spatial online analytical processing (OLAP), and the resulted effectiveness was demonstrated in the analysis of land utilization variation of Daqing city.
基金Hunan University of Arts and Science,Grant/Award Numbers:JGYB2302Geography Subject[2022]351。
文摘In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the realm of remote sensing images(RSIs),existing KD research studies are not only scarce but also lack competitiveness.This issue significantly impedes the deployment of the notable advantages of ViTs and CNNs.To tackle this,the authors introduce a novel hybrid‐model KD approach named HMKD‐Net,which comprises a CNN‐ViT ensemble teacher and a CNN student.Contrary to popular opinion,the authors posit that the sparsity in RSI data distribution limits the effectiveness and efficiency of hybrid‐model knowledge transfer.As a solution,a simple yet innovative method to handle variances during the KD phase is suggested,leading to substantial enhancements in the effectiveness and efficiency of hybrid knowledge transfer.The authors assessed the performance of HMKD‐Net on three RSI datasets.The findings indicate that HMKD‐Net significantly outperforms other cuttingedge methods while maintaining a significantly smaller size.Specifically,HMKD‐Net exceeds other KD‐based methods with a maximum accuracy improvement of 22.8%across various datasets.As ablation experiments indicated,HMKD‐Net has cut down on time expenses by about 80%in the KD process.This research study validates that the hybrid‐model KD technique can be more effective and efficient if the data distribution sparsity in RSIs is well handled.
基金supported by the National High-Tech Research and Development Plan of China (No.2007AA04Z224)the National Natural Science Foundation of China (No.60775047, 60835004)
文摘Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic algorithm with resampling method is adopted to obtain reducts with good generalization ability. Second, Multiple BP neural networks based on different reducts are built as base classifiers. According to the idea of selective ensemble, the neural network ensemble with best generalization ability can be found by search strategies. Finally, classification based on neural network ensemble is implemented by combining the predictions of component networks with voting. The method has been verified in the experiment of remote sensing image and five UCI datasets classification. Compared with conventional ensemble feature selection algorithms, it costs less time and lower computing complexity, and the classification accuracy is satisfactory.
基金supported by Natural Science Foundation of Chongqing in China(No.cstc2020jcyj-jqX0004)the Ministry of education of Humanities and Social Science project(No.20YJA790016)+1 种基金the National Natural Science Foundation of China(Grant No.42171298)We thank the patent supporting the method section of the paper(No.202110750360.1).
文摘Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neural network was provided for perceiving large-scale urban change,by modifying network structure and updating network strategy to extract richer feature information,and to meet the requirement of urban construction land extraction under the background of large-scale low-resolution image.This paper takes the Yangtze River Economic Belt of China as an empirical object to verify the practicability of the network,the results show the extraction results of the improved fully convolutional neural network model reached a precision of kappa coefficient of 0.88,which is better than traditional fully convolutional neural networks,it performs well in the construction land extraction at the scale of small and medium-sized cities.