The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectiv...The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.展开更多
A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced t...A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.展开更多
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model...To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.展开更多
Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation e...Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods fo...Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.展开更多
This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest reso...This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usua...In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of ex...How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of extracting river nets on moderate-resolution imaging spectroradiometer(MODIS)remote sensing images was proposed through analyzing two general extraction methods of river nets.The experiment results show that river nets can be optimized by ant colony algorithm efficiently,and difference ratio between the experimental vectorgraph and the data of National Fundamental Geographic Information System is down to 8.7%.The proposed algorithm can work for extracting river nets on MODIS remote sensing images effectively.展开更多
Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a ch...Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches.展开更多
Remote sensing image processing engaged researchers’attentiveness in recent years,especially classification.The main problem in classification is the ratio of the correct predictions after training.Feature extraction...Remote sensing image processing engaged researchers’attentiveness in recent years,especially classification.The main problem in classification is the ratio of the correct predictions after training.Feature extraction is the foremost important step to build high-performance image classifiers.The convolution neural networks can extract images’features that significantly improve the image classifiers’accuracy.This paper proposes two efficient approaches for remote sensing images classification that utilizes the concatenation of two convolution channels’outputs as a features extraction using two classic convolution models;these convolution models are the ResNet 50 and the DenseNet 169.These elicited features have been used by the fully connected neural network classifier and support vector machine classifier as input features.The results of the proposed methods are compared with other antecedent approaches in the same experimental environments.Evaluation is based on learning curves plotted during the training of the proposed classifier that is based on a fully connected neural network and measuring the overall accuracy for the both proposed classifiers.The proposed classifiers are used with their trained weights to predict a big remote sensing scene’s classes for a developed test.Experimental results ensure that,compared with the other traditional classifiers,the proposed classifiers are further accurate.展开更多
While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are n...While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are not satisfactory to extract coastline in high-resolution panchromatic remote sensing image.Active contour model,also called snakes,have proven useful for interactive specification of image contours,so it is used as an effective coastlines extraction technique.Firstly,coastlines are detected by water segmentation and boundary tracking,which are considered initial contours to be optimized through active contour model.As better energy functions are developed,the power assist of snakes becomes effective.New internal energy has been done to reduce problems caused by convergence to local minima,and new external energy can greatly enlarge the capture region around features of interest.After normalization processing,energies are iterated using greedy algorithm to accelerate convergence rate.The experimental results encompassed examples in images and demonstrated the capabilities and efficiencies of the improvement.展开更多
IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A stud...IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.展开更多
According to the remote sensing image characteristics, a set oi optimized compression quahty assessment methods is proposed on the basis of generating simulative images. Firstly, a means is put forward that generates ...According to the remote sensing image characteristics, a set oi optimized compression quahty assessment methods is proposed on the basis of generating simulative images. Firstly, a means is put forward that generates simulative images by scanning aerial films taking into account the space-borne remote sensing camera characteristics (including pixel resolution, histogram dynamic range and quantization). In the course of compression quality assessment, the objective assessment considers images texture changes and mutual relationship between simulative images and decompressed ima- ges, while the synthesized estimation factor (SEF) is brought out innovatively for the first time. Subjective assessment adopts a display setup -- 0.5mrn/pixel, which considers human visual char- acteristic and mainstream monitor. The set of methods are applied in compression plan design of panchromatic camera loaded on ZY-1-02C satellite. Through systematic and comprehensive assess- ment, simulation results show that image compression quality with the compression ratio of d:l can meet the remote sensing application requirements.展开更多
The Landsat image information has recently been widely applied to structural geology, especially to the analysis of lineaments, owing to their macroscopic, visual and comprehensive features. The images will be more ef...The Landsat image information has recently been widely applied to structural geology, especially to the analysis of lineaments, owing to their macroscopic, visual and comprehensive features. The images will be more effective when applied to the interpretation of active faults. Active faults are widely ditributed in China. Much attention has been paid to the study of active faults both in China and abroad. There is certain controversy concerning the implication of the term "active fault". Strictly speaking, the term should refer only to the faults that are still active in the present day. However, the term also usually refers to the faults which have been active continually or intermittently from the Quaternary (or the end of Tertiary) to the present day. We propose that the tones and the configurations of features on Landsat images are the principal keys to the interpretation of active faults. The faults, which display the most prominent展开更多
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
基金Young Innovative Talents Project of Guangdong Ordinary Universities(No.2022KQNCX225)School-level Teaching and Research Project of Guangzhou City Polytechnic(No.2022xky046)。
文摘The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.
文摘A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.
基金Funding for this research was provided by 511 Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.
文摘Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
基金funded by the Major Scientific and Technological Innovation Project of Shandong Province,Grant No.2022CXGC010609.
文摘Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.
文摘This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.
基金funded by Thuyloi University Foundation for Science and Technologyunder Grant Number TLU.STF.19-02.
文摘In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
基金National High Technology Research and Development Program of China(No.2007AA120305)National ScienceFoundation of China(No.40771145)+2 种基金Special Project of Ministry of Science and Technology of China(No.GYHY20070628)Subtopics of Ministry of Land and Resources Project of China(No.KD081902-03)Scientific Research and Innovation Project of Graduate School of Shanghai University,China(No.SHUCX101033)
文摘How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of extracting river nets on moderate-resolution imaging spectroradiometer(MODIS)remote sensing images was proposed through analyzing two general extraction methods of river nets.The experiment results show that river nets can be optimized by ant colony algorithm efficiently,and difference ratio between the experimental vectorgraph and the data of National Fundamental Geographic Information System is down to 8.7%.The proposed algorithm can work for extracting river nets on MODIS remote sensing images effectively.
基金This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A6A1A03038540)National Research Foundation of Korea(NRF)grant funded by the Korea government,Ministry of Science and ICT(MSIT)(2021R1F1A1046339).
文摘Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches.
基金The authors would like to thank the Deanship of Scientific Research,Taif University Researchers Supporting Project Number(TURSP-2020/239),Taif University,Taif,Saudi Arabia for supporting this research work.
文摘Remote sensing image processing engaged researchers’attentiveness in recent years,especially classification.The main problem in classification is the ratio of the correct predictions after training.Feature extraction is the foremost important step to build high-performance image classifiers.The convolution neural networks can extract images’features that significantly improve the image classifiers’accuracy.This paper proposes two efficient approaches for remote sensing images classification that utilizes the concatenation of two convolution channels’outputs as a features extraction using two classic convolution models;these convolution models are the ResNet 50 and the DenseNet 169.These elicited features have been used by the fully connected neural network classifier and support vector machine classifier as input features.The results of the proposed methods are compared with other antecedent approaches in the same experimental environments.Evaluation is based on learning curves plotted during the training of the proposed classifier that is based on a fully connected neural network and measuring the overall accuracy for the both proposed classifiers.The proposed classifiers are used with their trained weights to predict a big remote sensing scene’s classes for a developed test.Experimental results ensure that,compared with the other traditional classifiers,the proposed classifiers are further accurate.
基金Sponsoreds by the National Natural Science Foundation of China (Grant No. 60575016)
文摘While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are not satisfactory to extract coastline in high-resolution panchromatic remote sensing image.Active contour model,also called snakes,have proven useful for interactive specification of image contours,so it is used as an effective coastlines extraction technique.Firstly,coastlines are detected by water segmentation and boundary tracking,which are considered initial contours to be optimized through active contour model.As better energy functions are developed,the power assist of snakes becomes effective.New internal energy has been done to reduce problems caused by convergence to local minima,and new external energy can greatly enlarge the capture region around features of interest.After normalization processing,energies are iterated using greedy algorithm to accelerate convergence rate.The experimental results encompassed examples in images and demonstrated the capabilities and efficiencies of the improvement.
基金Supported by the High Technology Research and Development Programme of China (2001AA135091) and the National Natural Science Foundation of China (60375008).
文摘IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.
基金Supported by the Civil Aerospace"The 12~(th) Five-year Plan"Advanced Research Project(No.D040103)
文摘According to the remote sensing image characteristics, a set oi optimized compression quahty assessment methods is proposed on the basis of generating simulative images. Firstly, a means is put forward that generates simulative images by scanning aerial films taking into account the space-borne remote sensing camera characteristics (including pixel resolution, histogram dynamic range and quantization). In the course of compression quality assessment, the objective assessment considers images texture changes and mutual relationship between simulative images and decompressed ima- ges, while the synthesized estimation factor (SEF) is brought out innovatively for the first time. Subjective assessment adopts a display setup -- 0.5mrn/pixel, which considers human visual char- acteristic and mainstream monitor. The set of methods are applied in compression plan design of panchromatic camera loaded on ZY-1-02C satellite. Through systematic and comprehensive assess- ment, simulation results show that image compression quality with the compression ratio of d:l can meet the remote sensing application requirements.
文摘The Landsat image information has recently been widely applied to structural geology, especially to the analysis of lineaments, owing to their macroscopic, visual and comprehensive features. The images will be more effective when applied to the interpretation of active faults. Active faults are widely ditributed in China. Much attention has been paid to the study of active faults both in China and abroad. There is certain controversy concerning the implication of the term "active fault". Strictly speaking, the term should refer only to the faults that are still active in the present day. However, the term also usually refers to the faults which have been active continually or intermittently from the Quaternary (or the end of Tertiary) to the present day. We propose that the tones and the configurations of features on Landsat images are the principal keys to the interpretation of active faults. The faults, which display the most prominent
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.