Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the...Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area.展开更多
基金the Egyptian Ministry of Higher Education and Scientific Research
文摘Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area.