An investigation of gaseous elemental mercury concentration in atmosphere was conducted at Beijing and Guangzhou urban, Yangtze Delta regional sites and China Global Atmosphere Watch Baseline Observatory (CGAWBO) in...An investigation of gaseous elemental mercury concentration in atmosphere was conducted at Beijing and Guangzhou urban, Yangtze Delta regional sites and China Global Atmosphere Watch Baseline Observatory (CGAWBO) in Mt. Waliguan of remote continental area of China. High temporal resolved data were obtained using automated mercury analyzer RA-915^+. Results showed that the overall hourly mean Hg^0 concentrations in Mt. Waliguan were 1.7±1.1 ng/m3 in summer and 0.6±0.08 ng/m^3 in winter. The concentration in Yangtze Delta regional site was 5.4±4.1 ng/m^3, which was much higher than those in Waliguan continental background area and also higher than that found in North America and Europe rural areas. In Beijing urban area the overall hourly mean Hg^0 concentrations were 8.3±3.6 ng/m^3 in winter, 6.5±5.2 ng/m^3 in spring, 4.9±3.3 ng/m^3 in summer, and 6.7±3.5 ng/m^3 in autumn, respectively, and the concentration was 13.5±7.1 ng/m^3 in Guangzhou site. The mean concentration reached the lowest value at 14:00 and the highest at 02:00 or 20:00 in all monitoring campaigns in Beijing and Guangzhou urban areas, which contrasted with the results measured in Yangtze Delta regional site and Mr. Waliguan. The features of concentration and diurnal variation of Hg^0 in Beijing and Guangzhou implied the importance of local anthropogenic sources in contributing to the high Hg^0 concentration in urban areas of China. Contrary seasonal variation patterns of Hg^0 concentration were found between urban and remote sites. In Beijing the highest Hg^0 concentration was in winter and the lowest in summer, while in Mt. Waliguan the Hg^0 concentration in summer was higher than that in winter. These indicated that different processes and factors controlled Hg^0 concentration in urban, regional and remote areas.展开更多
In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link pha...In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.展开更多
Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in yo...Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in young and middle age men(Kobeissy,2015).Axon transection,or axotomy,occurs in wounds and during surgery.展开更多
In 1979, the Changchun Jingyuetan Remote Sensing Study and Test Site (RSSTS)began its work, and it was formally established in 1985. The RSSTS is subordinated the Changchun Branch of Chinese Academy of Sciences and is...In 1979, the Changchun Jingyuetan Remote Sensing Study and Test Site (RSSTS)began its work, and it was formally established in 1985. The RSSTS is subordinated the Changchun Branch of Chinese Academy of Sciences and is supported by the Changchun Institute of Geography and Changchun Institute of Optics and Fine Machnics, Chinese Academy of Sciences. It is under the management of the Resource & Environment Bureau of Chinese Academy of Sciences and it is the study base of remote sensing basis and application tests in China. The RSSTS is situated in the Jingyuetan scenic spot of the suburbs of Changchun City, Jilin Province. It is located at 43°40′—43°50′N and 125°18′-125°18′E.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2003CB415003)the Pilot Project of Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-443)the National Natural Science Foundation of China (No. 40473055).
文摘An investigation of gaseous elemental mercury concentration in atmosphere was conducted at Beijing and Guangzhou urban, Yangtze Delta regional sites and China Global Atmosphere Watch Baseline Observatory (CGAWBO) in Mt. Waliguan of remote continental area of China. High temporal resolved data were obtained using automated mercury analyzer RA-915^+. Results showed that the overall hourly mean Hg^0 concentrations in Mt. Waliguan were 1.7±1.1 ng/m3 in summer and 0.6±0.08 ng/m^3 in winter. The concentration in Yangtze Delta regional site was 5.4±4.1 ng/m^3, which was much higher than those in Waliguan continental background area and also higher than that found in North America and Europe rural areas. In Beijing urban area the overall hourly mean Hg^0 concentrations were 8.3±3.6 ng/m^3 in winter, 6.5±5.2 ng/m^3 in spring, 4.9±3.3 ng/m^3 in summer, and 6.7±3.5 ng/m^3 in autumn, respectively, and the concentration was 13.5±7.1 ng/m^3 in Guangzhou site. The mean concentration reached the lowest value at 14:00 and the highest at 02:00 or 20:00 in all monitoring campaigns in Beijing and Guangzhou urban areas, which contrasted with the results measured in Yangtze Delta regional site and Mr. Waliguan. The features of concentration and diurnal variation of Hg^0 in Beijing and Guangzhou implied the importance of local anthropogenic sources in contributing to the high Hg^0 concentration in urban areas of China. Contrary seasonal variation patterns of Hg^0 concentration were found between urban and remote sites. In Beijing the highest Hg^0 concentration was in winter and the lowest in summer, while in Mt. Waliguan the Hg^0 concentration in summer was higher than that in winter. These indicated that different processes and factors controlled Hg^0 concentration in urban, regional and remote areas.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB21000000)the Open Project Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(No.SKLST202011)+1 种基金the National Natural Science Foundation of China(Nos.12103059,12103059,12303076,and 12303077)the Planned Project of Xi’an Bureau of Science and Technology,China(No.E019XK104).
文摘In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.
基金Supported by the Ministry of Education and Science of Russia grants 6.4951.2017/6.7 and 6.6З24.2017/8.9
文摘Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in young and middle age men(Kobeissy,2015).Axon transection,or axotomy,occurs in wounds and during surgery.
文摘In 1979, the Changchun Jingyuetan Remote Sensing Study and Test Site (RSSTS)began its work, and it was formally established in 1985. The RSSTS is subordinated the Changchun Branch of Chinese Academy of Sciences and is supported by the Changchun Institute of Geography and Changchun Institute of Optics and Fine Machnics, Chinese Academy of Sciences. It is under the management of the Resource & Environment Bureau of Chinese Academy of Sciences and it is the study base of remote sensing basis and application tests in China. The RSSTS is situated in the Jingyuetan scenic spot of the suburbs of Changchun City, Jilin Province. It is located at 43°40′—43°50′N and 125°18′-125°18′E.