面向新型可重构处理器架构、动态配置、多任务调度和运行管理嵌入式高性能并行计算关键技术,提出了一种新的针对AVS(audio video coding standard)高清视频解码的实现方案.该方案是将AVS解码过程中的各种算法,映射到一个可重构处理器Rem...面向新型可重构处理器架构、动态配置、多任务调度和运行管理嵌入式高性能并行计算关键技术,提出了一种新的针对AVS(audio video coding standard)高清视频解码的实现方案.该方案是将AVS解码过程中的各种算法,映射到一个可重构处理器Remus(reconfigurable multimedia system)上,并通过仿真验证,在200MHz的工作频率下,实现了1080p的AVS高清码流实时解码(30f/s).基于可重构处理器的AVS解码实现方案,比目前市场上已存在的基于ASIC的多种高清解码方案具有更好的灵活性,而具体到解码过程中的典型算法,特别是循环计算,比现有的已提出的硬件加速器具有更好的加速性能.展开更多
A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular,...A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular, the assumption for non-zero diagonal entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is investigated in the presence of plant uncertainties and disturbances, through simulation studies.展开更多
文摘A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular, the assumption for non-zero diagonal entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is investigated in the presence of plant uncertainties and disturbances, through simulation studies.