As a branch of applied mathematics, coding theory plays an important role. Among them, cyclic codes have attracted much attention because of their good algebraic structure and easy analysis performance. In this paper,...As a branch of applied mathematics, coding theory plays an important role. Among them, cyclic codes have attracted much attention because of their good algebraic structure and easy analysis performance. In this paper, we will study one class of cyclic codes over F<sub>3</sub>. Given the length and dimension, we show that it is optimal by proving its minimum distance is equal to 4, according to the Sphere Packing bound.展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
In this article, we focus on cyclic and negacyclic codes of length 2p^s over the ring R = Fp^m + uFp^m, where p is an odd prime. On the basis of the works of Dinh (in J.Algebra 324,940-950,2010), we use the Chinese...In this article, we focus on cyclic and negacyclic codes of length 2p^s over the ring R = Fp^m + uFp^m, where p is an odd prime. On the basis of the works of Dinh (in J.Algebra 324,940-950,2010), we use the Chinese Remainder Theorem to establish the algebraic structure of cyclic and negacyclic codes of length 2p^s over the ring Fp^m + uFp^m in terms of polynomial generators. Furthermore, we obtain the number of codewords in each of those cyclic and negacyclic codes.展开更多
The ranks of cyclic and negacyclic codes over the finite chain ring R as well as their minimal generating sets are defined, and then the expression forms we presented by studying the structures of cyclic and negacycli...The ranks of cyclic and negacyclic codes over the finite chain ring R as well as their minimal generating sets are defined, and then the expression forms we presented by studying the structures of cyclic and negacyclic codes over the finite chain ring R. Through the paper, it is assumed that the length of codes n can not be divided by the characteristic of R.展开更多
In this paper, the period distribution of cyclic codes overR = F_q + uF_q +···+u^(m-1)F_q is studied, where um= 0 and q is a prime power. A necessary and sufficient condition for the existence of period...In this paper, the period distribution of cyclic codes overR = F_q + uF_q +···+u^(m-1)F_q is studied, where um= 0 and q is a prime power. A necessary and sufficient condition for the existence of period of cyclic codes over R is given. The period distributions of cyclic codes over R and their dual codes are determined by employing generator polynomial. The counting formulas of the period distributions of cyclic codes over R and their dual codes are obtained.展开更多
In this paper, we study skew cyclic codes over the ring Fp +vFp,where p is a odd prime and v 2=1. We give the generators of skew cyclic codes, with the consideration of the dual of skew cyclic codes.
In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes...In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes over finite chain rings is obtained. Using an isomorphism between cyclic and negacyclic codes over formal power series rings, the structure of negacyclic codes over the formal power series rings is obtained.展开更多
The study of cyclic codes over rings has generated a lot of public interest.In this paper,we study cyclic codes and their dual codes over the ring Z P2 of length pe,and find a set of generators for these codes.The ran...The study of cyclic codes over rings has generated a lot of public interest.In this paper,we study cyclic codes and their dual codes over the ring Z P2 of length pe,and find a set of generators for these codes.The ranks and minimal generator sets of these codes are studied as well,which play an important role in decoding and determining the distance distribution of codes.展开更多
Let p =ef +1 be an odd prime with positive integers e and f. In this paper, we calculate the values of Gauss periods of order e =3, 4, 6 over a finite field GF(q), where q is a prime with q≠p. As applications, severa...Let p =ef +1 be an odd prime with positive integers e and f. In this paper, we calculate the values of Gauss periods of order e =3, 4, 6 over a finite field GF(q), where q is a prime with q≠p. As applications, several cyclotomic sequences of order e =3, 4, 6 are employed to construct a number of classes of cyclic codes over GF(q) with prime length. Under certain conditions, the linear complexity and reciprocal minimal polynomials of cyclotomic sequences are calculated, and the lower bounds on the minimum distances of these cyclic codes are obtained.展开更多
The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the co...The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the correction of errors of n=p−12 length cyclic codes(C)over quaternion integers of Quaternion Mannheim(QM)weight one up to two coordinates have considered.In continuation,the case of cyclic codes of lengths n=p−12 and 2n−1=p−2 has studied to improve the error correction efficiency.In this study,we present the decoding of cyclic codes of length n=ϕ(p)=p−1 and length 2n−1=2ϕ(p)−1=2p−3(where p is prime integer andϕis Euler phi function)over Hamilton Quaternion integers of Quaternion Mannheim weight for the correction of errors.Furthermore,the error correction capability and code rate tradeoff of these codes are also discussed.Thus,an increase in the length of the cyclic code is achieved along with its better code rate and an adequate error correction capability.展开更多
In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some ne...In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.展开更多
Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct s...Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct sum of a fixed number of cyclic irreducible A-submodules. Finally the distinct quasi-cyclic codes as well as some specific subclasses are enumerated.展开更多
A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and...A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.展开更多
Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ ...Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.展开更多
Firstly,the Fourier transforms in finite fields and the concept of linear complexityof sequences are described.Then several known lower bounds on the minimum distance of cycliccodes are outlined.Finally,the minimum di...Firstly,the Fourier transforms in finite fields and the concept of linear complexityof sequences are described.Then several known lower bounds on the minimum distance of cycliccodes are outlined.Finally,the minimum distance of cyclic codes is analyzed via linear complexityof sequences,and new theorems about the lower bounds are obtained.展开更多
This paper presents new half rate Quasi Cyclic Low Density Parity Check (QC- LDPC) codes formed on the basis of combinatorial designs. In these codes, circulant matrices of the parity check matrix are formed on the ba...This paper presents new half rate Quasi Cyclic Low Density Parity Check (QC- LDPC) codes formed on the basis of combinatorial designs. In these codes, circulant matrices of the parity check matrix are formed on the basis of subsets in which the difference between any two elements of a subset is unique with all differences obtained from the same or different subsets. This structure of circulant matrices guarantees non-existence of cycle-4 in the Tanner graph of QC-LDPC codes. First, an irregular code with girth 6 constituted by two rows of circulant matrices is proposed. Then, more criteria will be considered on the structure of subsets with the mentioned feature aiming to represent a new scheme of regular QC-LPDC codes with girth at least 8. From simulations, it is confirmed that codes have similar to or better performance than other well-known half rate codes, while require lower complexity in their design.展开更多
We investigate how the code automorphism group can be used to study such combinatorial object as codes. Consider GF(qn) as a vector over GF(q). For any k = 0, 1, 2, 3, ???, n. Which GF(qn) exactly one subspace C of di...We investigate how the code automorphism group can be used to study such combinatorial object as codes. Consider GF(qn) as a vector over GF(q). For any k = 0, 1, 2, 3, ???, n. Which GF(qn) exactly one subspace C of dimension k and which is invariant under the automorphism.展开更多
Cyclic codes form an important class of codes. They have very interesting algebraic structure. Furthermore, they are equivalent to many important codes, such as binary Hamming codes, Golay codes and BCH codes. Minimal...Cyclic codes form an important class of codes. They have very interesting algebraic structure. Furthermore, they are equivalent to many important codes, such as binary Hamming codes, Golay codes and BCH codes. Minimal codewords in linear codes are widely used in constructing decoding algorithms and studying linear secret sharing scheme. In this paper, we show that in the binary cyclic code all of the codewords are minimal, except 0 and 1. Then, we obtain a result about the number of minimal codewords in the binary cyclic codes.展开更多
We study the structure of cyclic codes of length 2k?over Z8?for any natural number k.? It is known that cyclic codes of length 2k?over Z8?are ideals of the ring R=Z8[X]/. In this paper we prove that the ring R=Z8[X]/ ...We study the structure of cyclic codes of length 2k?over Z8?for any natural number k.? It is known that cyclic codes of length 2k?over Z8?are ideals of the ring R=Z8[X]/. In this paper we prove that the ring R=Z8[X]/ is a local ring with unique maximal ideal, thereby implying that R is not a principal ideal ring.? We also prove that cyclic codes of length?2k?over Z8?are generated as ideals by at most three elements.展开更多
文摘As a branch of applied mathematics, coding theory plays an important role. Among them, cyclic codes have attracted much attention because of their good algebraic structure and easy analysis performance. In this paper, we will study one class of cyclic codes over F<sub>3</sub>. Given the length and dimension, we show that it is optimal by proving its minimum distance is equal to 4, according to the Sphere Packing bound.
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
基金supported by the Natural ScienceFoundation of Hubei Province(D2014401)the Natural Science Foundation of Hubei Polytechnic University(12xjz14A)
文摘In this article, we focus on cyclic and negacyclic codes of length 2p^s over the ring R = Fp^m + uFp^m, where p is an odd prime. On the basis of the works of Dinh (in J.Algebra 324,940-950,2010), we use the Chinese Remainder Theorem to establish the algebraic structure of cyclic and negacyclic codes of length 2p^s over the ring Fp^m + uFp^m in terms of polynomial generators. Furthermore, we obtain the number of codewords in each of those cyclic and negacyclic codes.
基金Partly supported by the National Natural Science Foundations of China (No.60673074)key project of Ministry of Education Science and Technology’s Research (107065).
文摘The ranks of cyclic and negacyclic codes over the finite chain ring R as well as their minimal generating sets are defined, and then the expression forms we presented by studying the structures of cyclic and negacyclic codes over the finite chain ring R. Through the paper, it is assumed that the length of codes n can not be divided by the characteristic of R.
基金Supported by the National Natural Science Foundation of China(No.61370089)Fundamental Research Funds for the Central Universities(Nos.2013HGCH0024,J2014HGXJ0073)Specialized Research Fund for the Doctoral Program of Hefei University of Technology(No.JZ2014HGBZ0029)
文摘In this paper, the period distribution of cyclic codes overR = F_q + uF_q +···+u^(m-1)F_q is studied, where um= 0 and q is a prime power. A necessary and sufficient condition for the existence of period of cyclic codes over R is given. The period distributions of cyclic codes over R and their dual codes are determined by employing generator polynomial. The counting formulas of the period distributions of cyclic codes over R and their dual codes are obtained.
基金Supported by the National Natural Science Foundation of China(No.61370089)
文摘In this paper, we study skew cyclic codes over the ring Fp +vFp,where p is a odd prime and v 2=1. We give the generators of skew cyclic codes, with the consideration of the dual of skew cyclic codes.
基金supported by SRF for ROCS,SEM,the Key Project of Chinese Ministry of Education (108099)CCNU Project (CCNU09Y01003)
文摘In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes over finite chain rings is obtained. Using an isomorphism between cyclic and negacyclic codes over formal power series rings, the structure of negacyclic codes over the formal power series rings is obtained.
基金the National Natural Science Foundation of China(No.60673074)the Key Project of Ministry of Education Science and Technology’s Research(107065)
文摘The study of cyclic codes over rings has generated a lot of public interest.In this paper,we study cyclic codes and their dual codes over the ring Z P2 of length pe,and find a set of generators for these codes.The ranks and minimal generator sets of these codes are studied as well,which play an important role in decoding and determining the distance distribution of codes.
基金Supported by the National Natural Science Foundation(NNSF)of China(No.11171150)Foundation of Science and Technology on Information Assurance Laboratory(No.KJ-13-001)+1 种基金Funding of Jiangsu Innovation Program for Graduate Education(CXLX13-127,Fundamental Research Funds for the Central Universities)Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ-13-17)
文摘Let p =ef +1 be an odd prime with positive integers e and f. In this paper, we calculate the values of Gauss periods of order e =3, 4, 6 over a finite field GF(q), where q is a prime with q≠p. As applications, several cyclotomic sequences of order e =3, 4, 6 are employed to construct a number of classes of cyclic codes over GF(q) with prime length. Under certain conditions, the linear complexity and reciprocal minimal polynomials of cyclotomic sequences are calculated, and the lower bounds on the minimum distances of these cyclic codes are obtained.
基金The authors extend their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.1/85/42.
文摘The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the correction of errors of n=p−12 length cyclic codes(C)over quaternion integers of Quaternion Mannheim(QM)weight one up to two coordinates have considered.In continuation,the case of cyclic codes of lengths n=p−12 and 2n−1=p−2 has studied to improve the error correction efficiency.In this study,we present the decoding of cyclic codes of length n=ϕ(p)=p−1 and length 2n−1=2ϕ(p)−1=2p−3(where p is prime integer andϕis Euler phi function)over Hamilton Quaternion integers of Quaternion Mannheim weight for the correction of errors.Furthermore,the error correction capability and code rate tradeoff of these codes are also discussed.Thus,an increase in the length of the cyclic code is achieved along with its better code rate and an adequate error correction capability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60773085 and 60801051)the NSFC-KOSEF International Collaborative Research Funds (Grant Nos 60811140346 and F01-2008-000-10021-0)
文摘In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated.
基金the National Natural Science Foundation of China (60603016)
文摘Quasi-cyclic codes of length mn over Z4 are shown to be equivalent to A-submodules of A^n, where A = Z4[x]/(x^m - 1). In the case of m being odd, all quasi-cyclic codes are shown to be decomposable into the direct sum of a fixed number of cyclic irreducible A-submodules. Finally the distinct quasi-cyclic codes as well as some specific subclasses are enumerated.
基金Supported by the National Key Basic Research Program (973) Project (No. 2010CB328300)the 111 Project (No. B08038)
文摘A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.
基金supported by the Natural Science Foundation of Hubei Province (B20114410)the Natural Science Foundation of Hubei Polytechnic University (12xjz14A)
文摘Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.
文摘Firstly,the Fourier transforms in finite fields and the concept of linear complexityof sequences are described.Then several known lower bounds on the minimum distance of cycliccodes are outlined.Finally,the minimum distance of cyclic codes is analyzed via linear complexityof sequences,and new theorems about the lower bounds are obtained.
文摘This paper presents new half rate Quasi Cyclic Low Density Parity Check (QC- LDPC) codes formed on the basis of combinatorial designs. In these codes, circulant matrices of the parity check matrix are formed on the basis of subsets in which the difference between any two elements of a subset is unique with all differences obtained from the same or different subsets. This structure of circulant matrices guarantees non-existence of cycle-4 in the Tanner graph of QC-LDPC codes. First, an irregular code with girth 6 constituted by two rows of circulant matrices is proposed. Then, more criteria will be considered on the structure of subsets with the mentioned feature aiming to represent a new scheme of regular QC-LPDC codes with girth at least 8. From simulations, it is confirmed that codes have similar to or better performance than other well-known half rate codes, while require lower complexity in their design.
文摘We investigate how the code automorphism group can be used to study such combinatorial object as codes. Consider GF(qn) as a vector over GF(q). For any k = 0, 1, 2, 3, ???, n. Which GF(qn) exactly one subspace C of dimension k and which is invariant under the automorphism.
文摘Cyclic codes form an important class of codes. They have very interesting algebraic structure. Furthermore, they are equivalent to many important codes, such as binary Hamming codes, Golay codes and BCH codes. Minimal codewords in linear codes are widely used in constructing decoding algorithms and studying linear secret sharing scheme. In this paper, we show that in the binary cyclic code all of the codewords are minimal, except 0 and 1. Then, we obtain a result about the number of minimal codewords in the binary cyclic codes.
文摘We study the structure of cyclic codes of length 2k?over Z8?for any natural number k.? It is known that cyclic codes of length 2k?over Z8?are ideals of the ring R=Z8[X]/. In this paper we prove that the ring R=Z8[X]/ is a local ring with unique maximal ideal, thereby implying that R is not a principal ideal ring.? We also prove that cyclic codes of length?2k?over Z8?are generated as ideals by at most three elements.