期刊文献+
共找到18,917篇文章
< 1 2 250 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:4
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice 被引量:2
2
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury 被引量:1
3
作者 Yanan Dou Xiaowei Fei +7 位作者 Xin He Yu Huan Jialiang Wei Xiuquan Wu Weihao Lyu Zhou Fei Xia Li Fei Fei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1608-1617,共10页
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ... Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury. 展开更多
关键词 CASPASE-8 Homer1a INTERLEUKIN-18 INTERLEUKIN-1Β intraocular pressure ischemia/reperfusion injury JSH-23 Müller cells NLRP3 nuclear factor-kB p65 RETINA
下载PDF
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
4
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 apoptosis ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
5
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
6
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemia—reperfusion injury N-ACETYLSEROTONIN high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κB RATS
下载PDF
Effects of erigeron breviscapus (Vant.) Hand-Mazz pretreatment on pathology and oxyradical level following spinal cord ischemia-reperfusion injury in rabbits 被引量:1
7
作者 Feng-Tao Li,Xi-Jing He,Bin Cheng,Xin WangDepartment of Orthopedics,the Second Affiliated Hospital,Medical School of Xi’an Jiaotong University,Xi’an 710004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2010年第2期123-126,共4页
Objective To investigate the effects of erigeron breviscapus (Vant.) Hand-Mazz (erigeron breviscapus) pretreatment on pathology and oxyradical level in the spinal cord after ischemia-reperfusion (I/R) injury in rabbit... Objective To investigate the effects of erigeron breviscapus (Vant.) Hand-Mazz (erigeron breviscapus) pretreatment on pathology and oxyradical level in the spinal cord after ischemia-reperfusion (I/R) injury in rabbits. Methods A total of 40 New Zealand white rabbits were randomly divided into three groups: sham-operation group with 10 rabbits treated with only abdominal aorta exposure without occlusion,control group with 15 rabbits that underwent ischemia for 50 minutes and treated with matched saline,and experimental group with 15 rabbits that underwent ischemia for 50 minutes and treated with erigeron breviscapus (9mg/kg) injection before ischemia. Malondialdehyde (MDA) level and superoxide dismutase (SOD) activity in the spinal cord were examined at 6 and 24 hours after I/R,respectively. The morphological changes and the number of the spinal cord anterior horn motor neurons were observed and counted under the light microscope and electron microscope,respectively. Results The level of MDA was markedly decreased and SOD activity was increased in the experimental group compared with those in the control group (P<0.01). Compared with that in the control group,the number of motor neurons in the experimental group significantly increased at 24h after I/R (P<0.01) and the morphous of the motor neurons improved. Conclusion Erigeron breviscapus can reduce oxyradical production and the apoptosis of nerve cells,and protect nerve tissue structure and function after spinal cord I/R. 展开更多
关键词 ischemia-reperfusion injury MALONDIALDEHYDE superoxide dismutase erigeron breviscapus (Vant.) Hand-Mazz
下载PDF
Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the antiferroptosis system:based on a novel rat model 被引量:3
8
作者 Tian-Lei Zhang Zhi-Wei Zhang +6 位作者 Wei Lin Xin-Ru Lin Ke-Xin Lin Ming-Chu Fang Jiang-Hu Zhu Xiao-Ling Guo Zhen-Lang Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2229-2236,共8页
Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better underst... Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy,in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats.First,based on the conventional RiceVannucci model of hypoxic-ischemic encephalopathy,we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge.Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins.We also performed transmission electron microscopy and found typical characteristics of ferroptosis,including mitochondrial shrinkage,ruptured mitochondrial membranes,and reduced or absent mitochondrial cristae.Further,both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein,which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage.Finally,we found that ferroptosis-related Ferritin(Fth1)and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury.Based on these results,it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion.Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system. 展开更多
关键词 ferroptosis hypoxic-ischemic brain injury hypoxic-ischemic encephalopathy hypoxic-ischemic reperfusion brain injury mitochondria model proteomic analysis reperfusion Rice-Vannucci transmission electron microscopy
下载PDF
Neuroprotective potential for mitigating ischemia-reperfusion-induced damage
9
作者 Zi Ye Runqing Liu +6 位作者 Hangxing Wang Aizhen Zuo Cen Jin Nan Wang Huiqi Sun Luqian Feng Hua Yang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2199-2217,共19页
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Curre... Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury. 展开更多
关键词 apoptosis autophagy blood-brain barrier dietary supplements drug HORMONES inflammation NEUROPROTECTION oxidative stress prognosis PYROPTOSIS reperfusion injury risk factors RNA THERAPEUTICS
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:2
10
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B Cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
Network-pharmacology-based research on protective effects and underlying mechanism of Shuxin decoction against myocardial ischemia/reperfusion injury with diabetes 被引量:2
11
作者 Ling Yang Yang Jian +12 位作者 Zai-Yuan Zhang Bao-Wen Qi Yu-Bo Li Pan Long Yao Yang Xue Wang Shuo Huang Jing Huang Long-Fu Zhou Jie Ma Chang-Qing Jiang Yong-He Hu Wen-Jing Xiao 《World Journal of Diabetes》 SCIE 2023年第7期1057-1076,共20页
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-z... BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-zhi-wan"according to the traditional Chinese medicine theory.It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting.However,the underlying mechanism is still unclear.AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.METHODS This paper presents an ensemble model combining network pharmacology and biology.The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT.In parallel,therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus,DisGeNet,Genecards,Drugbank,OMIM,and PharmGKB.The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation,Visualization and Integrated Discovery.The major results of bioinformatics analysis were subsequently validated by animal experiments.RESULTS According to the hypothesis derived from bioinformatics analysis,SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein(LDL)and inhibiting the advanced glycation end products(AGE)-receptor for AGE(RAGE)signaling pathway.Subsequent animal experiments confirmed the hypothesis.The treatment with a dose of SXT(2.8 g/kg/d)resulted in a reduction in oxidized LDL,AGEs,and RAGE,and regulated the level of blood lipids.Besides,the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated,whereas Bcl-2 expression was up-regulated.The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes.Moreover,animal experiments verified that SXT could regulate the level of blood lipids,alleviate cardiomyocyte apoptosis,and improve cardiac function through the AGE-RAGE signaling pathway. 展开更多
关键词 Chinese herbal drugs Network-pharmacology DIABETES Myocardial reperfusion injury Shuxin decoction
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury 被引量:1
12
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
13
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Eph receptor A4 regulates motor neuron ferroptosis in spinal cord ischemia/reperfusion injury in rats
14
作者 Yan Dong Chunyu Ai +5 位作者 Ying Chen Zaili Zhang Dong Zhang Sidan Liu Xiangyi Tong Hong Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2219-2228,共10页
Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferrop... Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferroptosis in motor neuron disease. To investigate whether EphA4 signaling is involved in ferroptosis in spinal cord ischemia/reperfusion injury, in this study we established a rat model of spinal cord ischemia/reperfusion injury by clamping the left carotid artery and the left subclavian artery. We found that spinal cord ischemia/reperfusion injury increased EphA4 expression in the neurons of anterior horn, markedly worsened ferroptosis-related indicators, substantially increased the number of mitochondria exhibiting features consistent with ferroptosis, promoted deterioration of motor nerve function, increased the permeability of the blood-spinal cord barrier, and increased the rate of motor neuron death. Inhibition of EphA4 largely rescued these effects. However, intrathecal administration of the ferroptosis inducer Erastin counteracted the beneficial effects conferred by treatment with the EphA4 inhibitor. Mass spectrometry and a PubMed search were performed to identify proteins that interact with EphA4, with the most notable being Beclin1 and Erk1/2. Our results showed that inhibition of EphA4 expression reduced binding to Beclin1, markedly reduced p-Beclin1, and reduced Beclin1-XCT complex formation. Inhibition of EphA4 also reduced binding to p-Erk1/2 and markedly decreased the expression of c-Myc, transferrin receptor 1, and p-Erk1/2. Additionally, we observed co-localization of EphA4 and p-Beclin1 and of EphA4 and p-ERK1/2 in neurons in the anterior horn. In conclusion, EphA4 participates in regulating ferroptosis of spinal motor neurons in the anterior horn in spinal cord ischemia/reperfusion injury by promoting formation of the Beclin1-XCT complex and activating the Erk1/2/c-Myc/transferrin receptor 1 axis. 展开更多
关键词 BECLIN1 C-MYC EphA4 ERK1/2 ferroptosis motor neuron P-ERK1/2 RAT spinal cord ischemia/reperfusion injury transferrin receptor 1
下载PDF
Atorvastatin Alleviates Myocardial Ischemia-Reperfusion Injury via miR-26a-5p/FOXO1
15
作者 Jinlan Duan Tong Zhang +3 位作者 Ying Zhu Bingtuan Lu Qi Zheng Ninghui Mu 《Journal of Biosciences and Medicines》 CAS 2023年第2期215-231,共17页
Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart f... Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart failure, and it is particularly important to seek new strategies to mitigate reperfusion injury. In this paper, we will investigate whether atorvastatin can alleviate myocardial ischemia-reperfusion injury and verify its molecular mechanism. Methods: We successfully constructed a hypoxia-reperfusion (H/R) H9c2 cell model and transfected miR-26a-5p mimic, miR-26a-5p inhibitor and its negative control NC-mimic or NC-inhibitor into H9c2 cells using a transfection kit. The expression of miR-26a-5p and FOXO1 were detected by RT-qPCR assay, the expression of related proteins by Western blot assay, the cell viability of H9c2 cells by CCK-8 assay, the apoptosis rate of H9c2 cells by flow cytometry, the CK and LDH activity in cells by CK and LDH assay kits. The targeting relationship between miR-26a-5p and FOXO1 was verified by dual luciferase reporter gene assay. Results: MiR-26a-5p expression was decreased in H/R-induced cells and FOXO1 expression was increased in H/R-induced cells. Atorvastatin alleviated H/R injury in cardiomyocytes and was most effective at a concentration of 1 μM. Atorvastatin alleviated H/R injury in cardiomyocytes by upregulating miR-26a-5p expression, miR-26a-5p and FOXO1 were negatively regulated by targeting. Conclusion: Atorvastatin can alleviate H/R injury in cardiomyocytes by regulating miR-26a-5p/FOXO1. 展开更多
关键词 Myocardial Ischemia-reperfusion injury ATORVASTATIN miR-26a-5p FOXO1
下载PDF
High frequency electrical field-ultrashort wave therapy for treatment of cerebral ischemia/reperfusion injury in rats Histopathological evaluation
16
作者 Lixin Zhang Zhiqiang Zhang +2 位作者 Weidi Liang Lin Li Xiuhua Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第5期271-275,共5页
BACKGROUND: Ultrashortwave (USW) therapy may be a new method for treatment of ischemic cerebrovascular diseases. It is necessary to study its treatment time window. OBJECTIVE: To observe the effect of USW on reper... BACKGROUND: Ultrashortwave (USW) therapy may be a new method for treatment of ischemic cerebrovascular diseases. It is necessary to study its treatment time window. OBJECTIVE: To observe the effect of USW on reperfusion injury after occlusion of the middle cerebral artery (MCAO) in rats and discuss its acting mechanisms and best occasion. DESIGN: Randomized controlled observation, animal experiment. SETTING: Laboratory of Department of Rehabilitation Medicine, First Hospital Affiliated to China Medical University. MATERIALS: Sixty-six healthy Wistar rats of either gender and of clean grade, aged 18–20 weeks, weighing from 250 to 300 g, were provided by the Experimental Animal Center of China Medical University. An USW device (Shanghai Electrical Device Company) with the frequency of 40.68 MHz and the maximum output power of 40 W, and the first channel power controlled at about 11 W was used in this study. Output power was determined by photometry. METHODS: Sixty-six rats were randomly divided into 3 groups: Sham-operation group (n =6): The suture was inserted only 1.0 depth during operation, which did not cause MACO; Model group (n =12): The USW treatment procedure was performed with the power off on the model rats; USW treatment group (n =48): The 48 rats were randomly divided into modeling 0, 6, 12 and 18 hours 4 subgroups. USW therapy without heat was used on the head of rats for 10 minutes at each time point. Twelve rats in USW treatment group were decapitated following treatment at each time point, and then their brain tissues were harvested. The rat brain tissues in other groups were harvested by decapitation at 24 hours after modeling. When the rats were awake, the neurologic deficit was scored by Zea-Longa five-point scale (a score of 0 indicated no neurologic deficit, a score of 1 indicated failure to extend left paw fully, a score of 2 indicated circling to the left, and a score of 3 indicated falling to the left, and rats with a score of 4 did not walk spontaneously and has a depressed level of consciousness.) Rats which still survived at 24 hours and was scored 1 and 2 on the neurologic scoring were involved in the analysis. ① Determination of cerebral water content: Cerebral water contents of healthy and injured hemisphere were determined by wet/dry weighing method. Cerebral water content (100%) =(1–dry/wet weight)×100%.②Infarction volume: The brain tissue was sliced into 2 mm sections and each section was stained with 20 g/L 2,3,5-triphenyltetrazolium chloride (TTC) by TTC staining technique for 30 minutes in a water bath at 37 ℃.Then, the section was fixed in 100 g/L formaldehyde for 10 minutes .The infarction volume was analyzed by using an imaging analyzer.③ Preparation of light microscopic sample: The rat brain tissue fixed by 100 g/L neutral formaldehyde and stained with TTC, were gradiently dehydrated with alcoholic, embedded with paraffin, sliced and stained by HE, finally, the sections were observed under the light microscope. MAIN OUTCOME MEASURES: Cerebral water content, cerebral infarction volume and cerebral histomorphology of rats in each group. RESULTS: Sixty-six rats were involved in the final analysis. ①Cerebral water content: There were no significant differences of cerebral water content in healthy hemisphere among groups (P 〉 0.05). Cerebral water content of injured hemisphere in the model group and at modeling 0, 6, 12 and 18 hours in the USW treatment group was (81.50±0.74) %, (81.02±0.83) %, (79.78±0.70) %, (79.74±0.84) %, (79.39± 1.06) %, respectively, which was significantly higher than that in the sham-operation group [(78.09±0.52) %, P 〈 0.05]. At modeling 0, 6 and 12 hours, the cerebral water content in the injured hemisphere in the USW treatment group was significantly lower than that in the model group, respectively (P 〈 0.05). It indicatedthat USW treatment given at 6, 12 and 18 hours after ischemia/reperfusion can lessen brain edema. ② Cerebral infarction volume: At modeling 18 hours, cerebral infarction volume in the injured hemisphere of USW treatment group was smaller than that in the model group [(191.62±121.45),(362.03±142.01)mm3, t =2.23,P 〈 0.05]. ③ Cerebral histomorphological observation: No swelling was found in the brain tissue section of rats in the sham-operation group. In the model group, the size of infarction hemisphere was obviously increased, gyrus became flattened, cortical sulci was shallow, the color at infarct focus obviously became light, and the tissue was fragile and brittle. In the sham-operation group, it was found under the microscope that mesenchyma was highly swelled, neuronal peripheral interspace was obviously broadened, neurons presented triangle, nucleoli were reduced, condensed even disappeared, and neutrophils in the vascular cavity were obviously increased. In the USW treatment group, pathological injury was not obviously lessened at 0 hour, moderate or mild edema could be found in the injured hemisphere of USW treatment group at modeling 6,12 and 18 hours, and at this time, neutrophils in vascular cavity were increased slightly, and pathological injuries were lessened. CONCLUSION: USW may play a protective effect on cerebral ischemia/reperfusion injury by decreasing brain edema and/or cerebral infarction volume. The treatment action of USW may start at 6 hours after reperfusion, and the best occasion of application may be at 18 hours after reperfusion. 展开更多
关键词 ischemic cerebrovascular disease ultrashort wave reperfusion injury brain edema
下载PDF
Effect of ulinastatin on the pathological links related to myocardial injury and ischemia reperfusion after cardiac surgery under cardiopulmonary bypass
17
作者 Ke-Qi Xie Qing Xia +1 位作者 Ji-Wen Luo Wei Yang 《Journal of Hainan Medical University》 2018年第17期39-42,共4页
Objective: To study the effect of ulinastatin on the pathological links related to myocardial injury and ischemia reperfusion after cardiac surgery under cardiopulmonary bypass. Methods: The patients undergoing valve ... Objective: To study the effect of ulinastatin on the pathological links related to myocardial injury and ischemia reperfusion after cardiac surgery under cardiopulmonary bypass. Methods: The patients undergoing valve replacement under cardiopulmonary bypass between February 2015 and December 2017 in Mianyang Central Hospital of Sichuan Province were chosen as the research subjects and randomly divided into the experimental group who accepted ulinastatin + creatine phosphate sodium intervention and the control group who accepted creatine phosphate sodium intervention. The levels of myocardial injury markers, apoptosis molecules, inflammation molecules and oxidative stress molecules in serum as well as the expression intensity of inflammation molecules and oxidative stress molecules in peripheral blood were determined before surgery and 24 h after surgery. Results: Serum cTnI, CK-MB, H-FABP, sFasL, sTWEAK, Caspase-3, Caspase-8, IL-1β, TNF-α, ICAM1, MDA and NO levels as well as peripheral blood TLR4, NLRP3, NOX2 and iNOS expression intensity of both groups of patients after surgery were significantly higher than those before surgery, and serum cTnI, CK-MB, H-FABP, sFasL, sTWEAK, Caspase-3, Caspase-8, IL-1β, TNF- , ICAM1, MDA and NO levels as well as peripheral blood TLR4, NLRP3, NOX2 and iNOS expression intensity of experimental group after surgery were significantly lower than those of control group. Conclusion: Ulinastatin can improve the apoptosis, inflammation and oxidative stress related to myocardial injury and ischemia reperfusion after cardiac surgery under cardiopulmonary bypass. 展开更多
关键词 CARDIOPULMONARY BYPASS ULINASTATIN Iischemia reperfusion injury Apoptosis Inflammation Oxidative stress
下载PDF
Protective Effects of Zingiberis and Acniti Praeparatae Decoction on Myocardial IschemiaReperfusion Injury in Rats
18
作者 史琴 彭芳 +1 位作者 李娟 赵云华 《Agricultural Science & Technology》 CAS 2014年第8期1370-1373,共4页
This study aimed to investigate the protective effects of zin-giberis and acniti praeparatae decoction on oxidative stress injury induced by my-ocardial ischemia reperfusion in rats. [Method] Myocardial ischemia-reper... This study aimed to investigate the protective effects of zin-giberis and acniti praeparatae decoction on oxidative stress injury induced by my-ocardial ischemia reperfusion in rats. [Method] Myocardial ischemia-reperfusion was performed by ligation of the left anterior descending coronary artery for 30 min, fol-lowed by reperfusion for 60 min. The effects of zingiberis and acniti praeparatae decoction on ECG ST segment, myocardial infarction percentage, malondialdehyde (MDA) content in the serum, superoxide dismutase (SOD) activity and other indica-tors were observed. [Result] Zingiberis and acniti praeparatae decoction could effec-tively inhibit ECG ST segment elevation caused by myocardial ischemia-reperfusion injuries, reduce the percentage of myocardial infarction, decline the content of MDA in the serum, and increase the activity of SOD. [Conclusion] Zingiberis and acniti praeparatae decoction exhibits protective effects on oxidative injuries caused by my-ocardial ischemia-reperfusion injuries in rats, which may be involved in reducing the formation of myocardial free radicals and enhancing antioxidant capacity of my-ocardium. 展开更多
关键词 Zingiberis and acniti praeparatae decoction Myocardial ischemia My-ocardial reperfusion injury Oxidative stress
下载PDF
Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion 被引量:3
19
作者 Lin-Yan Huang Ju-Yun Ma +9 位作者 Jin-Xiu Song Jing-Jing Xu Rui Hong Hai-Di Fan Heng Cai Wan Wang Yan-Ling Wang Zhao-Li Hu Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1040-1045,共6页
Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In t... Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue(cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury. 展开更多
关键词 CDC42 cerebral ischemia/reperfusion injury GPR91 neural stem cells neurogenesis PROLIFERATION SIRT5 SUCCINATE SUCCINYLATION
下载PDF
Interferon-γpriming enhances the therapeutic effects of menstrual blood-derived stromal cells in a mouse liver ischemia-reperfusion model 被引量:1
20
作者 Qi Zhang Si-Ning Zhou +9 位作者 Jia-Min Fu Li-Jun Chen Yang-Xin Fang Zhen-Yu Xu Hui-Kang Xu Yin Yuan Yu-Qi Huang Ning Zhang Yi-Fei Li Charlie Xiang 《World Journal of Stem Cells》 SCIE 2023年第9期876-896,共21页
BACKGROUND Mesenchymal stem cells(MSCs)have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury(IRI)and regulating immune rejection.However,some studies have in... BACKGROUND Mesenchymal stem cells(MSCs)have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury(IRI)and regulating immune rejection.However,some studies have indicated that the effects of MSCs are not very significant.Therefore,approaches that enable MSCs to exert significant and stable therapeutic effects are worth further study.AIM To enhance the therapeutic potential of human menstrual blood-derived stromal cells(MenSCs)in the mouse liver ischemia-reperfusion(I/R)model via interferon-γ(IFN-γ)priming.METHODS Apoptosis was analyzed by flow cytometry to evaluate the safety of IFN-γpriming,and indoleamine 2,3-dioxygenase(IDO)levels were measured by quantitative real-time reverse transcription polymerase chain reaction,western blotting,and ELISA to evaluate the efficacy of IFN-γpriming.In vivo,the liver I/R model was established in male C57/BL mice,hematoxylin and eosin and TUNEL staining was performed and serum liver enzyme levels were measured to assess the degree of liver injury,and regulatory T cell(Treg)numbers in spleens were determined by flow cytometry to assess immune tolerance potential.Metabolomics analysis was conducted to elucidate the potential mechanism underlying the regulatory effects of primed MenSCs.In vitro,we established a hypoxia/reoxygenation(H/R)model and analyzed apoptosis by flow cytometry to investigate the mechanism through which primed MenSCs inhibit apoptosis.Transmission electron microscopy,western blotting,and immunofluorescence were used to analyze autophagy levels.RESULTS IFN-γ-primed MenSCs secreted higher levels of IDO,attenuated liver injury,and increased Treg numbers in the mouse spleens to greater degrees than untreated MenSCs.Metabolomics and autophagy analyses proved that primed MenSCs more strongly induced autophagy in the mouse livers.In the H/R model,autophagy inhibitors increased the level of H/R-induced apoptosis,indicating that autophagy exerted protective effects.In addition,primed MenSCs decreased the level of H/R-induced apoptosis via IDO and autophagy.Further rescue experiments proved that IDO enhanced the protective autophagy by inhibiting the mammalian target of rapamycin(mTOR)pathway and activating the AMPK pathway.CONCLUSION IFN-γ-primed MenSCs exerted better therapeutic effects in the liver I/R model by secreting higher IDO levels.MenSCs and IDO activated the AMPK-mTOR-autophagy axis to reduce IRI,and IDO increased Treg numbers in the spleen and enhanced the MenSC-mediated induction of immune tolerance.Our study suggests that IFN-γ-primed MenSCs may be a novel and superior MSC product for liver transplantation in the future. 展开更多
关键词 Mesenchymal stem cells Cell therapy reperfusion injury T-LYMPHOCYTES AUTOPHAGY Liver
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部