The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete(RAC)beams reinforced with glass fiber-reinforced polymer(GFRP)bars.A total of twelve beams were built and tested u...This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete(RAC)beams reinforced with glass fiber-reinforced polymer(GFRP)bars.A total of twelve beams were built and tested up to failure under four-point bending.The main parameters were reinforcement ratio(0.38%,0.60%,and 1.17%),recycled aggregate replacement ratio(R=0,50%,and 100%)and longitudinal reinforcement types(GFRP and steel).The flexural capacity,failure modes,flexibility deformation,reinforcement strains and crack distribution of the tested beams were investigated and compared with the calculation models of American code ACI 440.1-R-15,Canadian code CSA S806-12 and ISIS-M03-07.The tested results indicated that the reinforcement ratio has great influence on the ultimate load,crack width and deflection of GFRP-RAC beams,the recycled aggregate replacement ratio has little influence on it.However,it was found that the reinforcement ratio has no obvious influence on the cracking load which was only related to the recycled aggregate replacement ratio.The average cracking load decreased by 5%and 15%as the recycled aggregate replacement ratio increased from 0 to 50%and 100%.For the steel-RAC beams,the ultimate load was found to be about 1/2 of the ultimate load of GFRP-RAC beam under the same condition and the trend of strain,deflection and crack width were different from GFRP-RAC beams.This is due to the different material properties of GFRP bars and steel rebar.On the other hand,the calculation results showed that ACI 440.1-R-15 and CSA S806-12 underestimated the ultimate load of GFRP-RAC beams.Moreover,the deflection prediction of GFRP-RAC beams by CSA S806-12 is relatively accurate compared with ACI 440.1-R-15 and ISIS-M03-07.As for the prediction of crack width,the results of ACI 440.1-R-15 prediction were in good agreement with the experimental results at the ultimate load,with the average value of 1.09±0.28.展开更多
The main purpose of this research is to study the properties of re-use different types of construction materials such as PVC (polyvinylchloride) scraps, clay brick and recycled concrete as a partial replacement of c...The main purpose of this research is to study the properties of re-use different types of construction materials such as PVC (polyvinylchloride) scraps, clay brick and recycled concrete as a partial replacement of coarse aggregate. Different proportions (1%, 3%, 5% and 7%) by weight were used for PVC. scrap, (10%, 20%, 30%, and 40%) by weight were used for recycled concrete and (5%, 10%, 15%, and 20%) by weight were used for clay brick. Mechanical tests such as compressive and tensile strength tests and physical tests such as ultrasonic pulse velocity, bulk density, porosity, specific gravity and water absorption tests were done to the samples after curing in normal water for 28 days. Test results showed slightly degradation in mechanical and physical engineering properties of concrete specimens that used partial replacement of recycled concrete coarse aggregate, degradation increased with increasing of replacement but test results still closely to reference samples. Use of polyvinyl chloride in proportions not more than 5% as a partial replacement of coarse aggregates given acceptable results in comparison with reference samples but all test results degraded at 7% replacements. Test results of partial replacement of crushed brick coarse aggregates unacceptable and the range of degradation are wide because of increased (water: cement) ratio to improve the concrete workability.展开更多
Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates...Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates are considered:sea sand and river sand(natural and recycled coarse aggregates).Variations in SSRAC properties at different ages are investigated.A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete.Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content.The elastic modulus of SSRAC increases with age.However,the Poisson’s ratio reduces after 2 years.Typical axial stress-strain curves of SSRAC vary with age.Generally,the effect of coarse aggregates on the axial deformation of SSRAC is clear;however,the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand.The aggregate type changes the crack characteristics and propagation of SSRAC.Finally,an analytical expression is suggested to construct the long-term stress-strain curve of SSRAC.展开更多
The purpose of this study is to reveal the service performance of recycled aggregate concrete(RAC)components for different values of water-cement ratio and replacement rate of recycled coarse aggregate(RCA).Generally,...The purpose of this study is to reveal the service performance of recycled aggregate concrete(RAC)components for different values of water-cement ratio and replacement rate of recycled coarse aggregate(RCA).Generally,the concrete strength decreases with the increase of the replacement rate of RCA,in order to meet the strength requirements when changing the replacement rate of RCA,it is necessary to change the water-cement ratio at the same time.Therefore,the axial compressive strengths of prism with 25 mix proportions,the short-term mechanical properties and long-term deformation properties of reinforced concrete beams were tested respectively by changing water-cement ratio and RCA replacement rate.The bearing capacity and the strain nephogram of samples under different loads were obtained using the Digital Image Correlation(DIC)method,and a self-made gravity loading experimental device was used for long-term deformation investigation.Results showed that the damage pattern of RAC was the same as that of natural aggregate concrete(NAC),but the brittleness was more pronounced.The brittleness of concrete before failure can be reduced more effectively by adjusting the replacement rate of RCA than by adjusting the water-cement ratio.The water-cement ratio has an evident influence on the axial compressive strength and early creep of concrete,while the replacement rate of RCA has a remarkable effect on the long-term deformation of the concrete beams.展开更多
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(51704029)Liaoning Revitalization Talents Program(XLYC1807044,XLYC1807050).
文摘This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete(RAC)beams reinforced with glass fiber-reinforced polymer(GFRP)bars.A total of twelve beams were built and tested up to failure under four-point bending.The main parameters were reinforcement ratio(0.38%,0.60%,and 1.17%),recycled aggregate replacement ratio(R=0,50%,and 100%)and longitudinal reinforcement types(GFRP and steel).The flexural capacity,failure modes,flexibility deformation,reinforcement strains and crack distribution of the tested beams were investigated and compared with the calculation models of American code ACI 440.1-R-15,Canadian code CSA S806-12 and ISIS-M03-07.The tested results indicated that the reinforcement ratio has great influence on the ultimate load,crack width and deflection of GFRP-RAC beams,the recycled aggregate replacement ratio has little influence on it.However,it was found that the reinforcement ratio has no obvious influence on the cracking load which was only related to the recycled aggregate replacement ratio.The average cracking load decreased by 5%and 15%as the recycled aggregate replacement ratio increased from 0 to 50%and 100%.For the steel-RAC beams,the ultimate load was found to be about 1/2 of the ultimate load of GFRP-RAC beam under the same condition and the trend of strain,deflection and crack width were different from GFRP-RAC beams.This is due to the different material properties of GFRP bars and steel rebar.On the other hand,the calculation results showed that ACI 440.1-R-15 and CSA S806-12 underestimated the ultimate load of GFRP-RAC beams.Moreover,the deflection prediction of GFRP-RAC beams by CSA S806-12 is relatively accurate compared with ACI 440.1-R-15 and ISIS-M03-07.As for the prediction of crack width,the results of ACI 440.1-R-15 prediction were in good agreement with the experimental results at the ultimate load,with the average value of 1.09±0.28.
文摘The main purpose of this research is to study the properties of re-use different types of construction materials such as PVC (polyvinylchloride) scraps, clay brick and recycled concrete as a partial replacement of coarse aggregate. Different proportions (1%, 3%, 5% and 7%) by weight were used for PVC. scrap, (10%, 20%, 30%, and 40%) by weight were used for recycled concrete and (5%, 10%, 15%, and 20%) by weight were used for clay brick. Mechanical tests such as compressive and tensile strength tests and physical tests such as ultrasonic pulse velocity, bulk density, porosity, specific gravity and water absorption tests were done to the samples after curing in normal water for 28 days. Test results showed slightly degradation in mechanical and physical engineering properties of concrete specimens that used partial replacement of recycled concrete coarse aggregate, degradation increased with increasing of replacement but test results still closely to reference samples. Use of polyvinyl chloride in proportions not more than 5% as a partial replacement of coarse aggregates given acceptable results in comparison with reference samples but all test results degraded at 7% replacements. Test results of partial replacement of crushed brick coarse aggregates unacceptable and the range of degradation are wide because of increased (water: cement) ratio to improve the concrete workability.
基金the support provided by the National Natural Science Foundation of China(Grant Nos.51408346,51978389)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety(No.2019ZDK035)the Opening Foundation of the Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2019KF12).
文摘Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates are considered:sea sand and river sand(natural and recycled coarse aggregates).Variations in SSRAC properties at different ages are investigated.A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete.Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content.The elastic modulus of SSRAC increases with age.However,the Poisson’s ratio reduces after 2 years.Typical axial stress-strain curves of SSRAC vary with age.Generally,the effect of coarse aggregates on the axial deformation of SSRAC is clear;however,the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand.The aggregate type changes the crack characteristics and propagation of SSRAC.Finally,an analytical expression is suggested to construct the long-term stress-strain curve of SSRAC.
基金the National Natural Science Foundation of China(Grant Nos.52168015,51768005)Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281333).
文摘The purpose of this study is to reveal the service performance of recycled aggregate concrete(RAC)components for different values of water-cement ratio and replacement rate of recycled coarse aggregate(RCA).Generally,the concrete strength decreases with the increase of the replacement rate of RCA,in order to meet the strength requirements when changing the replacement rate of RCA,it is necessary to change the water-cement ratio at the same time.Therefore,the axial compressive strengths of prism with 25 mix proportions,the short-term mechanical properties and long-term deformation properties of reinforced concrete beams were tested respectively by changing water-cement ratio and RCA replacement rate.The bearing capacity and the strain nephogram of samples under different loads were obtained using the Digital Image Correlation(DIC)method,and a self-made gravity loading experimental device was used for long-term deformation investigation.Results showed that the damage pattern of RAC was the same as that of natural aggregate concrete(NAC),but the brittleness was more pronounced.The brittleness of concrete before failure can be reduced more effectively by adjusting the replacement rate of RCA than by adjusting the water-cement ratio.The water-cement ratio has an evident influence on the axial compressive strength and early creep of concrete,while the replacement rate of RCA has a remarkable effect on the long-term deformation of the concrete beams.