Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of r...Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the mechanisms of the inhibitory effect of baicalin on iron accumulation observed in Parkinson's disease rats. Iron content was detected using inductively coupled plasma-atomic emission spectroscopy. Results showed that iron content decreased 41% after blocking divalent metal transporter 1 and ferroportin 1 proteins. After treatment with ferric ammonium citrate of differing concentrations (10, 50, 100, 400 ktg/mL) in C6 glioma cells, cell survival rate and ferroportin 1 expression were negatively correlated with ferric ammonium citrate concentration, but divalent metal transporter 1 expression positively correlated with ferric ammonium citrate concentration. Baicalin or deferoxamine reduced divalent metal transporter 1 expression, but increased ferroportin 1 expression in the 100 μg/mL ferric ammonium citrate-loaded C6 cells. These results indicate that baicalin down-regulated iron concentration, which positively regulat- ed divalent metal transporter 1 expression and negatively regulated ferroportin 1 expression, and decreased iron accumulation in the substantia nigra.展开更多
Turbofan engine intakes are designed to provide separation-free flow at the fan faceover a wide range of operating conditions. But at some off-design conditions, like at high flightspeeds and high angles of attack (Ao...Turbofan engine intakes are designed to provide separation-free flow at the fan faceover a wide range of operating conditions. But at some off-design conditions, like at high flightspeeds and high angles of attack (AoA), the aero engine intake may encounter flow separation.This boundary layer separation inside the nacelle inlet of an aircraft engine can lead to a largenumber of undesirable outcomes like reduction in fan efficiency, engine stall and high levels ofstress on the fan blades. Active flow control is a promising solution to reduce inlet boundarylayer separation and the associated fan-face flow distortion at such off-design conditions. Byblowing pressurized air into the intake near the separation point, the boundary layer is ener-gized and separation can be controlled. This study investigates the applicability of lip blowing,an active flow control technique, to control intake separation and flow distortion at the fan-face.First, intake separation was triggered in a 3D CFD model based on the NASA CommonResearch Model (CRM) using high AoA cases at cruise condition (Mach number 0.85, Massflow capture ratio w0.7) and the features of separated flow were analyzed. Thereafter, activeflow control was introduce to the intake in the form of two types of lip blowing, direct andpitched blowing. The efficacy of lip blowing at achieving separation control in an ultra highbypass ratio turbofan engine intake has been established through this study. The present paperalso examines the significance of blowing parameters like the type of blowing, blowing pres-sure ratio, and blowing slot dimension, at different angles of attack to identify the critical con-trol parameters. Our research successfully establishes proof of concept by demonstrating the feasibility of using lip blowing for separation control in aero-intakes, via numerical modelling.Furthermore, this study also provides crucial insights regarding the important variables to beconsidered for future experimental studies, and also for detailed studies covering a wider rangeof operating and blowing conditions.展开更多
基金supported by the Scientific Research Common Program of Beijing Municipal Commission of Education,No.KM20110025010
文摘Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the mechanisms of the inhibitory effect of baicalin on iron accumulation observed in Parkinson's disease rats. Iron content was detected using inductively coupled plasma-atomic emission spectroscopy. Results showed that iron content decreased 41% after blocking divalent metal transporter 1 and ferroportin 1 proteins. After treatment with ferric ammonium citrate of differing concentrations (10, 50, 100, 400 ktg/mL) in C6 glioma cells, cell survival rate and ferroportin 1 expression were negatively correlated with ferric ammonium citrate concentration, but divalent metal transporter 1 expression positively correlated with ferric ammonium citrate concentration. Baicalin or deferoxamine reduced divalent metal transporter 1 expression, but increased ferroportin 1 expression in the 100 μg/mL ferric ammonium citrate-loaded C6 cells. These results indicate that baicalin down-regulated iron concentration, which positively regulat- ed divalent metal transporter 1 expression and negatively regulated ferroportin 1 expression, and decreased iron accumulation in the substantia nigra.
文摘Turbofan engine intakes are designed to provide separation-free flow at the fan faceover a wide range of operating conditions. But at some off-design conditions, like at high flightspeeds and high angles of attack (AoA), the aero engine intake may encounter flow separation.This boundary layer separation inside the nacelle inlet of an aircraft engine can lead to a largenumber of undesirable outcomes like reduction in fan efficiency, engine stall and high levels ofstress on the fan blades. Active flow control is a promising solution to reduce inlet boundarylayer separation and the associated fan-face flow distortion at such off-design conditions. Byblowing pressurized air into the intake near the separation point, the boundary layer is ener-gized and separation can be controlled. This study investigates the applicability of lip blowing,an active flow control technique, to control intake separation and flow distortion at the fan-face.First, intake separation was triggered in a 3D CFD model based on the NASA CommonResearch Model (CRM) using high AoA cases at cruise condition (Mach number 0.85, Massflow capture ratio w0.7) and the features of separated flow were analyzed. Thereafter, activeflow control was introduce to the intake in the form of two types of lip blowing, direct andpitched blowing. The efficacy of lip blowing at achieving separation control in an ultra highbypass ratio turbofan engine intake has been established through this study. The present paperalso examines the significance of blowing parameters like the type of blowing, blowing pres-sure ratio, and blowing slot dimension, at different angles of attack to identify the critical con-trol parameters. Our research successfully establishes proof of concept by demonstrating the feasibility of using lip blowing for separation control in aero-intakes, via numerical modelling.Furthermore, this study also provides crucial insights regarding the important variables to beconsidered for future experimental studies, and also for detailed studies covering a wider rangeof operating and blowing conditions.