Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and densit...Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.展开更多
Dozens of low-head dams are removed annually for reasons of obsolescence, financial liability, public safety, or as part of aquatic ecosystem restoration. Prior to removing a dam, hydrologic and sedimentologic studies...Dozens of low-head dams are removed annually for reasons of obsolescence, financial liability, public safety, or as part of aquatic ecosystem restoration. Prior to removing a dam, hydrologic and sedimentologic studies are used to predict channel changes that would occur after the proposed dam removal. One commonly used predictive approach is a channel evolution model (CEM). However, most CEMs assume that the reservoir has trapped cohesive silts and muds. This study looks at the effects of low-head dam removal on a reservoir in filled with sand-rich sediment. The Secor Dam (2.5 m tall, 17 m wide) was constructed on the Ottawa River in northwestern Ohio (USA) during 1928 and was removed in 2007. High resolution channel cross-sections were measured at 17 locations prior to dam removal and re-measured every approximately 30 days for 6 months following the removal. Sediment sampling, sediment traps, substrate sampling, differential GPS tracking of channel bed forms and sediment coring were also used to characterize the channel sediment response to dam removal. Breaching of the dam produced a diffuse nickzone which was the width of the channel and about 10 m in length. One initial response was downstream migration of a sediment wave at rates up to 0.5 m/hr. The overall effect was erosion of the former reservoir to a distance of 150 m upstream of the former dam. Portions of the former reservoir were incised >1 m. Within the first 6 months after removal, approximately 800 m3 of sand had been mobilized from the former reservoir, transported downstream past the former dam, and had primarily in-filled pre-existing pools within a reach approximately 150 m downstream of the former dam. This behavior significantly differs from the predicted results of current CEMs which anticipate a first flush of suspended sediment and minor deposition of bed load materials in the channel downstream of the former dam.展开更多
Reservoirs are usually exposed to sediment accumulation problems that will lead to reduction in their storage capacity. This problem directly affects the performance of the dams and causes shortage of their useful lif...Reservoirs are usually exposed to sediment accumulation problems that will lead to reduction in their storage capacity. This problem directly affects the performance of the dams and causes shortage of their useful life. The simplest technique to estimate sediment deposition rate is using sediment rating curve with sediment trapping efficiency (TE) of the reservoir. Many empirical and semi-empirical approaches have been suggested for to determine this term depending on the annual inflow rate, reservoir characteristics and features of the catchments area. In this study six different empirical methods depending on the residence time principle (water retention time) were used. These approaches were reviewed and applied to determine TE of Mosul dam reservoir (MDR) for period 1986 to 2011. The monthly operating data for inflow, outflow and water elevations for MDR were used to determine monthly TE and long-term TE for whole period of MDR using the mentioned methods. Furthermore, the monthly inflow rate for River Tigris upstream MDR, its sediment rating curve and sediment feeding from valleys around MDR were used to estimate the amount sediment coming to the reservoir. The results provided by these methods for TE with sediment coming to MDR were used to compute the amount of sediment deposited in MDR on monthly bases during this period. The results obtained were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam. The results showed all the mentioned methods gave convergent results and they were very close to bathymetric survey results for estimating the volume of sediment deposited especially that proposed by Ward which gave 0.368% percentage error. Furthermore, the result computed using monthly TE gave good agreement if compared with that long-term TE where the percentage error was ranging between –3.229% to 1.674% for monthly adopted data and –4.862% to?–2.477% for whole period data. It is believed that this work will help others to use this procedure on other reservoirs.展开更多
A possibility of using bottom sediments from dam reservoir as a material for earthen embankments was considered in the paper. It was stated that sediments cannot be used for road or hydrotechnical embankments without ...A possibility of using bottom sediments from dam reservoir as a material for earthen embankments was considered in the paper. It was stated that sediments cannot be used for road or hydrotechnical embankments without improving their geotechnical parameters. Thanks to low values of the permeability coefficient, they can be used for sealing elements in embankments or for low levees. In order to verify usability of this material for mentioned levees, stability and filtration calculations were carried out using Finite Element Method (FEM) analysis. It was stated the levee built from bottom sediments is stable even at the height of 8.0 m, despite the boundary conditions on the upstream side.展开更多
Despite the benefits of big project dams, their reservoirs may have significant environmental impacts. The main objective of this paper is to develop an integrated analysis framework of remotely-sensed data ad GIS tec...Despite the benefits of big project dams, their reservoirs may have significant environmental impacts. The main objective of this paper is to develop an integrated analysis framework of remotely-sensed data ad GIS techniques for delineating surface area of </span><span><span style="font-family:"">the </span></span><span><span style="font-family:"">dam reservoir, simulating their capacities and assessing associated environmental impacts with application to Grand Ethiopian Renaissance Dam (GERD). For this purpose, a methodology of four main steps was applied. The methodology involved delineating </span></span><span><span style="font-family:"">the </span></span><span><span style="font-family:"">up-to-date reservoir using remotely sensed data, simulating reservoir at full capacity, estimating current and potential reservoir capacity and finally assessing environmental impacts of the reservoir. The results revealed that the up-to-date reservoir covers a total area of 330.3 km<sup>2</sup> with </span></span><span><span style="font-family:"">a </span></span><span><span style="font-family:"">gross storage capacity of 12 billion m<sup>3</sup>. Under full capacity scenario, the reservoir is estimated to cover a total area of 1650.9 km<sup>2</sup>, with </span></span><span><span style="font-family:"">a </span></span><span><span style="font-family:"">storage capacity of 63.4 billion m<sup>3</sup>. </span></span><span><span style="font-family:"">The </span></span><span><span style="font-family:"">GERD reservoir may lead to dramatic changes in the local environment with significant implications at both regional and global scales. In this respect, it was found that the reservoir will lead to destruction of ecosystems in a total area of 1300 km<sup>2</sup> covered by grasslands and Savannah. Also, </span></span><span><span style="font-family:"">the </span></span><span><span style="font-family:"">GERD reservoir is expected to have significant impacts on GHGs emissions and global warming. Moreover, </span></span><span><span style="font-family:"">a </span></span><span><span style="font-family:"">massive quantity of water is expected to be lost by surface evaporation.展开更多
The GIS data of digital elevation model, topographic maps of different scales, satellite images and GPS were used to analyze the geometrical relations, bathometric properties and shape form of selected depressions on ...The GIS data of digital elevation model, topographic maps of different scales, satellite images and GPS were used to analyze the geometrical relations, bathometric properties and shape form of selected depressions on Al-Jirnaf valley. GIS was used to analyze the hydromorphometry and geometry of the depressions, these analyses explain the role of main valley’s contribution to the hydrology of the valley, then, three locations for water storage were suggested. 2D and 3D models of the sites were given, the maximum level, volume, surface area, circumference, shape factor of three supposed reservoirs calculated for different hypothetical levels of water in the reservoir, and the optimal level were determined, the maximum suggested levels are 190, 185 and 180 m, the areas are 3.25, 7.97 and 20.47 km2, the volumes are 0.0096, 0.0334 and 0.1118 km3 for the three locations respectively. This experimental procedure can be repeated in other depressions for the same purpose.展开更多
Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for ...Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.展开更多
This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fl...This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.展开更多
基金sponsored by the key lab.program of Shaanxi Province (08JZ04)the key discipline fund for scientific research program of Baoji University of Arts and Science (ZK0796)the key discipline fund for natural geography of Shaanxi Province in Baoji University of Arts and Science
文摘Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.
文摘Dozens of low-head dams are removed annually for reasons of obsolescence, financial liability, public safety, or as part of aquatic ecosystem restoration. Prior to removing a dam, hydrologic and sedimentologic studies are used to predict channel changes that would occur after the proposed dam removal. One commonly used predictive approach is a channel evolution model (CEM). However, most CEMs assume that the reservoir has trapped cohesive silts and muds. This study looks at the effects of low-head dam removal on a reservoir in filled with sand-rich sediment. The Secor Dam (2.5 m tall, 17 m wide) was constructed on the Ottawa River in northwestern Ohio (USA) during 1928 and was removed in 2007. High resolution channel cross-sections were measured at 17 locations prior to dam removal and re-measured every approximately 30 days for 6 months following the removal. Sediment sampling, sediment traps, substrate sampling, differential GPS tracking of channel bed forms and sediment coring were also used to characterize the channel sediment response to dam removal. Breaching of the dam produced a diffuse nickzone which was the width of the channel and about 10 m in length. One initial response was downstream migration of a sediment wave at rates up to 0.5 m/hr. The overall effect was erosion of the former reservoir to a distance of 150 m upstream of the former dam. Portions of the former reservoir were incised >1 m. Within the first 6 months after removal, approximately 800 m3 of sand had been mobilized from the former reservoir, transported downstream past the former dam, and had primarily in-filled pre-existing pools within a reach approximately 150 m downstream of the former dam. This behavior significantly differs from the predicted results of current CEMs which anticipate a first flush of suspended sediment and minor deposition of bed load materials in the channel downstream of the former dam.
基金supported by the National Basic Research Program of China(‘‘973’’Program,No.2013CB035906)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51621092)Heilongjiang Provincial Major Scientific and Technological Project of Applied Technology Research and Development Plan(No.GA14A501)
文摘Reservoirs are usually exposed to sediment accumulation problems that will lead to reduction in their storage capacity. This problem directly affects the performance of the dams and causes shortage of their useful life. The simplest technique to estimate sediment deposition rate is using sediment rating curve with sediment trapping efficiency (TE) of the reservoir. Many empirical and semi-empirical approaches have been suggested for to determine this term depending on the annual inflow rate, reservoir characteristics and features of the catchments area. In this study six different empirical methods depending on the residence time principle (water retention time) were used. These approaches were reviewed and applied to determine TE of Mosul dam reservoir (MDR) for period 1986 to 2011. The monthly operating data for inflow, outflow and water elevations for MDR were used to determine monthly TE and long-term TE for whole period of MDR using the mentioned methods. Furthermore, the monthly inflow rate for River Tigris upstream MDR, its sediment rating curve and sediment feeding from valleys around MDR were used to estimate the amount sediment coming to the reservoir. The results provided by these methods for TE with sediment coming to MDR were used to compute the amount of sediment deposited in MDR on monthly bases during this period. The results obtained were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam. The results showed all the mentioned methods gave convergent results and they were very close to bathymetric survey results for estimating the volume of sediment deposited especially that proposed by Ward which gave 0.368% percentage error. Furthermore, the result computed using monthly TE gave good agreement if compared with that long-term TE where the percentage error was ranging between –3.229% to 1.674% for monthly adopted data and –4.862% to?–2.477% for whole period data. It is believed that this work will help others to use this procedure on other reservoirs.
文摘A possibility of using bottom sediments from dam reservoir as a material for earthen embankments was considered in the paper. It was stated that sediments cannot be used for road or hydrotechnical embankments without improving their geotechnical parameters. Thanks to low values of the permeability coefficient, they can be used for sealing elements in embankments or for low levees. In order to verify usability of this material for mentioned levees, stability and filtration calculations were carried out using Finite Element Method (FEM) analysis. It was stated the levee built from bottom sediments is stable even at the height of 8.0 m, despite the boundary conditions on the upstream side.
文摘Despite the benefits of big project dams, their reservoirs may have significant environmental impacts. The main objective of this paper is to develop an integrated analysis framework of remotely-sensed data ad GIS techniques for delineating surface area of </span><span><span style="font-family:"">the </span></span><span><span style="font-family:"">dam reservoir, simulating their capacities and assessing associated environmental impacts with application to Grand Ethiopian Renaissance Dam (GERD). For this purpose, a methodology of four main steps was applied. The methodology involved delineating </span></span><span><span style="font-family:"">the </span></span><span><span style="font-family:"">up-to-date reservoir using remotely sensed data, simulating reservoir at full capacity, estimating current and potential reservoir capacity and finally assessing environmental impacts of the reservoir. The results revealed that the up-to-date reservoir covers a total area of 330.3 km<sup>2</sup> with </span></span><span><span style="font-family:"">a </span></span><span><span style="font-family:"">gross storage capacity of 12 billion m<sup>3</sup>. Under full capacity scenario, the reservoir is estimated to cover a total area of 1650.9 km<sup>2</sup>, with </span></span><span><span style="font-family:"">a </span></span><span><span style="font-family:"">storage capacity of 63.4 billion m<sup>3</sup>. </span></span><span><span style="font-family:"">The </span></span><span><span style="font-family:"">GERD reservoir may lead to dramatic changes in the local environment with significant implications at both regional and global scales. In this respect, it was found that the reservoir will lead to destruction of ecosystems in a total area of 1300 km<sup>2</sup> covered by grasslands and Savannah. Also, </span></span><span><span style="font-family:"">the </span></span><span><span style="font-family:"">GERD reservoir is expected to have significant impacts on GHGs emissions and global warming. Moreover, </span></span><span><span style="font-family:"">a </span></span><span><span style="font-family:"">massive quantity of water is expected to be lost by surface evaporation.
文摘The GIS data of digital elevation model, topographic maps of different scales, satellite images and GPS were used to analyze the geometrical relations, bathometric properties and shape form of selected depressions on Al-Jirnaf valley. GIS was used to analyze the hydromorphometry and geometry of the depressions, these analyses explain the role of main valley’s contribution to the hydrology of the valley, then, three locations for water storage were suggested. 2D and 3D models of the sites were given, the maximum level, volume, surface area, circumference, shape factor of three supposed reservoirs calculated for different hypothetical levels of water in the reservoir, and the optimal level were determined, the maximum suggested levels are 190, 185 and 180 m, the areas are 3.25, 7.97 and 20.47 km2, the volumes are 0.0096, 0.0334 and 0.1118 km3 for the three locations respectively. This experimental procedure can be repeated in other depressions for the same purpose.
基金supported by the National Natural Science Foundation of China(Grants No.51569003 and 51579059)the Natural Science Foundation of Guangxi Province(Grant No.2017GXNSFAA198361)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2017052)
文摘Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.
文摘This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.