期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
RESERVOIR DESCRIPTION BY USING A PIECEWISE CONSTANT LEVEL SET METHOD 被引量:3
1
作者 Hongwei Li Center for Integrated Petroleum Research,University of Bergen,Norway Department of Mathematics,Capital Normal University,Beijing 100037,China Xuecheng Tai Department of Mathematics,University of Bergen,Norway +1 位作者 Division of Mathematical Sciences,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore Sigurd Ivar Aanonsen Center for Integrated Petroleum Research,University of Bergen,Norway Department of Mathematics,University of Bergen,Norway 《Journal of Computational Mathematics》 SCIE CSCD 2008年第3期365-377,共13页
We consider the permeability estimation problem in two-phase porous media flow. We try to identify the permeability field by utilizing both the production data from wells as well as inverted seismic data. The permeabi... We consider the permeability estimation problem in two-phase porous media flow. We try to identify the permeability field by utilizing both the production data from wells as well as inverted seismic data. The permeability field is assumed to be piecewise constant, or can be approximated well by a piecewise constant function. A variant of the level set method, called Piecewise Constant Level Set Method is used to represent the interfaces between the regions with different permeability levels. The inverse problem is solved by minimizing a functional, and TV norm regularization is used to deal with the ill-posedness. We also use the operator-splitting technique to decompose the constraint term from the fidelity term. This gives us more flexibility to deal with the constraint and helps to stabilize the algorithm. 展开更多
关键词 Inverse problem Level set method Piecewise constant Operator splitting reservoir description
原文传递
An overview of efficient development practices at low permeability sandstone reservoirs in China 被引量:1
2
作者 Bingyu Ji Jichao Fang 《Energy Geoscience》 2023年第3期149-157,共9页
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio... Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs. 展开更多
关键词 Well pattern FRACTURING Development model reservoir description Low permeability reservoir
下载PDF
Fine description of unconventional clastic oil reservoirs
3
作者 Huanqing Chen 《Petroleum Research》 EI 2024年第2期289-303,共15页
The latest researches reveal that studies on unconventional clastic oil reservoirs in China generally lag far behind those in other countries in respect of content and methodology.This study presents the definition an... The latest researches reveal that studies on unconventional clastic oil reservoirs in China generally lag far behind those in other countries in respect of content and methodology.This study presents the definition and classification of unconventional oil reservoirs and analyzes the problems in the fine description of unconventional oil reservoirs.The key content of the fine description of unconventional oil reservoirs is summarized from four aspects:fine fracture characterization based on fine structure interpretation,reservoir architecture characterization based on sedimentary facies,characteristics of nanoscale microscopic pore structure of reservoir,and evaluation of source rock and“sweet spot zone”.Finally,this study suggests that development of fine description of unconventional clastic oil reservoirs in the future should focus on rock brittleness analysis and fracture modeling,geophysical characterization of unconventional clastic oil reservoirs,fluid description of tight reservoirs,and physical/numerical simulation experiments of unconventional oil reservoirs. 展开更多
关键词 Unconventional clastic reservoir Fine reservoir description Oil sand Tight oilShale oil Fracture characterization Nanoscale microscopic pore structure Sweet spot
原文传递
Theory,technology and practice of shale gas three-dimensional development:A case study of Fuling shale gas field in Sichuan Basin,SW China 被引量:2
4
作者 SUN Huanquan CAI Xunyu +5 位作者 HU Degao LU Zhiyong ZHAO Peirong ZHENG Aiwei LI Jiqing WANG Haitao 《Petroleum Exploration and Development》 SCIE 2023年第3期651-664,共14页
In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is dif... In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field. 展开更多
关键词 shale gas three-dimensional development Fuling shale gas field Sichuan Basin fine reservoir description precision fracturing recoveryfactor
下载PDF
Research on Influence of Micro Structure on Residual Oil Distribution
5
作者 Xu Xin Cao Ying Li Lei 《International Journal of Technology Management》 2015年第2期127-129,共3页
Researching residual oil distribution not only is a difficulty in the world, but also is the pioneering research subject in different fields such as geology, physical geography and reservoir engineering. The modem geo... Researching residual oil distribution not only is a difficulty in the world, but also is the pioneering research subject in different fields such as geology, physical geography and reservoir engineering. The modem geology technique, well logging technology and reservoir engineering technique develops rapidly, which provides favorable conditions for researching residual oil distribution. 展开更多
关键词 detailed reservoir description residual oil distribution sedimentary characteristics heterogenous
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部