Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi...Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio...Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs.展开更多
Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of ...Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of an adequate water injection system is considered.Due to the poor properties and weak seepage capacity of these reservoirs,the water injection pressure typically increases continuously during water flooding.In this research,the impact on such a process of factors as permeability,row spacing,and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model.On this basis,a comprehensive evaluation coefficient is introduced able to account for the effective driving pressure.展开更多
Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and esta...Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.展开更多
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China...It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.展开更多
Lower-phase microemulsions with core-shell structure were prepared by microemulsion dilution method.The high temperature resistant systems were screened and the performance evaluation experiments were conducted to cla...Lower-phase microemulsions with core-shell structure were prepared by microemulsion dilution method.The high temperature resistant systems were screened and the performance evaluation experiments were conducted to clarify the spontaneous imbibition mechanisms in ultra-low permeability and tight oil reservoirs,and to direct the field microfracture huff and puff test of oil well.The microemulsion system(O-ME)with cationic-nonionic surfactant as hydrophilic shell,No.3 white oil as oil phase core has the highest imbibition recovery;its spontaneous imbibition mechanisms include:the ultra-low interfacial tension and wettability reversal significantly reduce oil adhesion work to improve oil displacement efficiency,the nanoscale“core-shell structure”formed can easily enter micro-nano pores and throats to expand the swept volume,in addition,the remarkable effect of dispersing and solubilizing crude oil can improve the mobility of crude oil.Based on the experimental results,a microfracture huff and puff test of O-ME was carried out in Well YBD43-X506 of Shengli Oilfield.After being treated,the well had a significant increase of daily fluid production to 5 tons from 1.4 tons,and an increase of daily oil production to 2.7 tons from 1.0 ton before treatment.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t...Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.展开更多
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit...The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.展开更多
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized...In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.展开更多
In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controll...In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.展开更多
Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of C...Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.展开更多
It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a rese...It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.展开更多
Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeabilit...Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeability reservoir belongs to the classification of middle-to-fine sized feldspar sandstone, with its components being low in ma- turity, deposited in distributary rivers in the front of the delta; 2) the reservoir is obviously dominated by a low or a very low permeability with a linear variation tendency different from that of the ultra-low permeability reservoir; 3) the spa- tial variation in lithology and physical properties of the reservoir are controlled by the sedimentary facies zones, and 4) the physical property of the reservoir is significantly influenced by clastic constituents and their structure, and the con- stituent of cement materials and their content. The result also shows that the diagenesis action of the reservoir is quite strong in which dissolution greatly modified the reservoir In addition, the inter-granular dissolved pores are the mainly developed ones and the micro-structure is dominated by the combination of middle-to-large sized pores with fine-to-coarse throats. Finally, the radius of the throats is in good exponential correlation with permeability and the seepage capacity comes from those large sized throats.展开更多
Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or ...Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or the control of gas underground.展开更多
The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir r...The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir remain unclear. The flowback efficiencies of different types of surfactant micellar solutions were evaluated by core experiments, a multi-level pore-throat system micromodel characterizing pore-throat structures of low permeability reservoir was made, and flooding and flowback experiments of brine and surfactant micellar solutions of different salinities were conducted with the micromodel to show the oil flowback process in micron pores under the effect of surfactant micellar solution visually and reveal the mechanisms of enhancing displacement and flowback efficiency of surfactant micellar solution. During the displacement and flowback of brine and low salinity surfactant micellar solution, many small droplets were produced, when the small droplets passed through pore-throats, huge percolation resistance was created due to Jamin’s effect, leading to the rise of displacement and flowback pressure differences and the drop of flowback efficiency. The surfactant micellar solutions with critical salinity and optimal salinity that were miscible with crude oil to form Winsor Ⅲ micro-emulsion didnot produce mass small droplets, so they could effectively reduce percolation resistance and enhance oil displacement and flowback efficiency.展开更多
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
基金This work has been Sponsored by CNPC Innovation Found(Grant No.2021DQ02-0202)Besides,the authors gratefully appreciate the financial support of the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH013)Financial supports from the National Natural Science Foundation of China(Grant No.52174046)is also significantly acknowledged.
文摘Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金support by the National Key Research and Development Program of China(Grant No.2018YFA0702400)is gratefully acknowledged.
文摘Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Project of China(Grant Nos.2017ZX05013-001 and 2017ZX05069-003).
文摘Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of an adequate water injection system is considered.Due to the poor properties and weak seepage capacity of these reservoirs,the water injection pressure typically increases continuously during water flooding.In this research,the impact on such a process of factors as permeability,row spacing,and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model.On this basis,a comprehensive evaluation coefficient is introduced able to account for the effective driving pressure.
文摘Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M681768Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200653+1 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2021GJZPY15National Natural Science Foundation of China,Grant/Award Number:42106210。
文摘It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.
基金Supported by the National Natural Science Foundation of China(52174046)Innovation Foundation of China National Petroleum Corporation(2021DQ02-0202)Science Foundation of China University of Petroleum(Beijing)(2462020XKBH013).
文摘Lower-phase microemulsions with core-shell structure were prepared by microemulsion dilution method.The high temperature resistant systems were screened and the performance evaluation experiments were conducted to clarify the spontaneous imbibition mechanisms in ultra-low permeability and tight oil reservoirs,and to direct the field microfracture huff and puff test of oil well.The microemulsion system(O-ME)with cationic-nonionic surfactant as hydrophilic shell,No.3 white oil as oil phase core has the highest imbibition recovery;its spontaneous imbibition mechanisms include:the ultra-low interfacial tension and wettability reversal significantly reduce oil adhesion work to improve oil displacement efficiency,the nanoscale“core-shell structure”formed can easily enter micro-nano pores and throats to expand the swept volume,in addition,the remarkable effect of dispersing and solubilizing crude oil can improve the mobility of crude oil.Based on the experimental results,a microfracture huff and puff test of O-ME was carried out in Well YBD43-X506 of Shengli Oilfield.After being treated,the well had a significant increase of daily fluid production to 5 tons from 1.4 tons,and an increase of daily oil production to 2.7 tons from 1.0 ton before treatment.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
基金Financial support for this work from National Sciencetechnology Support Plan Projects (No. 2012BAC26B00)the Science Foundation of China University of Petroleum, Beijing (No.2462012KYJJ23)
文摘Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.
基金supported by the National Natural Science Foundation of China(Grant No.U1262203)the National Science and Technology Special Grant(No.2011ZX05006-003)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.14CX06070A)the Chinese Scholarship Council(No.201506450029)
文摘The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.
文摘In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.
基金Project 50374048 supported by the National Natural Science Foundation of China
文摘In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.
基金Project(2015KTCL01-09)supported by the Innovation Project of Science and Technology of Shaanxi Province,ChinaProject(2015M582699)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016JQ4022)supported by the Natural Science Foundation Research Project of Shaanxi Province,ChinaProject(41702146)supported by the National Natural Science Foundation of China
文摘Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.
基金Projects 2003BA613-07-05 supported by the Program of National "Fifteen" Science and Technology 04E7029 by the CNPC Innovation Foundation
文摘It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.
文摘Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeability reservoir belongs to the classification of middle-to-fine sized feldspar sandstone, with its components being low in ma- turity, deposited in distributary rivers in the front of the delta; 2) the reservoir is obviously dominated by a low or a very low permeability with a linear variation tendency different from that of the ultra-low permeability reservoir; 3) the spa- tial variation in lithology and physical properties of the reservoir are controlled by the sedimentary facies zones, and 4) the physical property of the reservoir is significantly influenced by clastic constituents and their structure, and the con- stituent of cement materials and their content. The result also shows that the diagenesis action of the reservoir is quite strong in which dissolution greatly modified the reservoir In addition, the inter-granular dissolved pores are the mainly developed ones and the micro-structure is dominated by the combination of middle-to-large sized pores with fine-to-coarse throats. Finally, the radius of the throats is in good exponential correlation with permeability and the seepage capacity comes from those large sized throats.
基金financially supported by the National Natural Sciences Foundation of China(grant No.NSFC 41472127)
文摘Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or the control of gas underground.
基金Supported by the China National Science and Technology Major Project (2017ZX05009-005-003)Research Fund of China University of Petroleum (Beijing)(2462019QNXZ04)。
文摘The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir remain unclear. The flowback efficiencies of different types of surfactant micellar solutions were evaluated by core experiments, a multi-level pore-throat system micromodel characterizing pore-throat structures of low permeability reservoir was made, and flooding and flowback experiments of brine and surfactant micellar solutions of different salinities were conducted with the micromodel to show the oil flowback process in micron pores under the effect of surfactant micellar solution visually and reveal the mechanisms of enhancing displacement and flowback efficiency of surfactant micellar solution. During the displacement and flowback of brine and low salinity surfactant micellar solution, many small droplets were produced, when the small droplets passed through pore-throats, huge percolation resistance was created due to Jamin’s effect, leading to the rise of displacement and flowback pressure differences and the drop of flowback efficiency. The surfactant micellar solutions with critical salinity and optimal salinity that were miscible with crude oil to form Winsor Ⅲ micro-emulsion didnot produce mass small droplets, so they could effectively reduce percolation resistance and enhance oil displacement and flowback efficiency.