期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Chemical modification of barite for improving the performance of weighting materials for water-based drilling fluids
1
作者 Li-Li Yang Ze-Yu Liu +3 位作者 Shi-bo Wang Xian-Bo He Guan-Cheng Jiang Jie Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期551-566,共16页
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r... With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs. 展开更多
关键词 Drilling fluids Weighting materials Filtration control reservoir protection Stability property
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
2
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
Super-amphiphobic, strong self-cleaning and high-efficiency water-based drilling fluids 被引量:1
3
作者 JIANG Guancheng NI Xiaoxiao +2 位作者 LI Wuquan QUAN Xiaohu LUO Xuwu 《Petroleum Exploration and Development》 2020年第2期421-429,共9页
Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free... Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block. 展开更多
关键词 POLYMER super-amphiphobic agent water-based drilling fluid reservoir protection wellbore stability
下载PDF
Development and Performance Evaluation of a Deep Water Synthetic Based Drilling Fluid System
4
作者 Zengwei Chen Yongxue Lin +7 位作者 Ninghui Dou Chao Xiao Hua’an Zhou Yu Deng Yuqiao Zhou Song Wang Dichen Tan Huaiyuan Long 《Open Journal of Yangtze Oil and Gas》 2020年第4期165-175,共11页
With the enhancement of environmental protection awareness, the requirements on drilling fluid are increasingly strict, and the use of ordinary oil-based drilling fluid has been strictly restricted. In order to solve ... With the enhancement of environmental protection awareness, the requirements on drilling fluid are increasingly strict, and the use of ordinary oil-based drilling fluid has been strictly restricted. In order to solve the environmental protection and oil-gas reservoir protection problems of offshore oil drilling, a new synthetic basic drilling fluid system is developed. The basic formula is as follows: a basic fluid (80% Linear a-olefin + 20% Simulated seawater) + 2.5% nano organobentonite + 3.5% emulsifier RHJ-5<sup>#</sup> + 2.5% fluid loss agent SDJ-1 + 1.5% CaO + the right amount of oil wetting barite to adjust the density, and a multifunctional oil and gas formation protective agent YRZ has been developed. The performance was evaluated using a high-low-high-temperature rheometer, a high-temperature and high-pressure demulsification voltage tester, and a high-temperature and high-pressure dynamic fluid loss meter. The results show that the developed synthetic based drilling fluid has good rheological property, demulsification voltage ≥ 500 V, temperature resistance up to 160°C, high temperature and high pressure filtration loss < 3.5 mL. After adding 2% - 5% YRZ into the basic formula of synthetic based drilling fluid, the permeability recovery value exceeds 90% and the reservoir protection effect is excellent. The new synthetic deepwater drilling fluid is expected to have a good application prospect in offshore deepwater drilling. 展开更多
关键词 Deep Water Drilling Synthetic Based Drilling Fluid Rheological Property Emulsion Stability FILTRATION Agent of reservoir protection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部