As residual attitude errors are likely to affect the synthetic aperture radar (SAR) imaging, this paper presents a SAR motioncompensation algorithm based on the correction of residual attitude errors. The existing met...As residual attitude errors are likely to affect the synthetic aperture radar (SAR) imaging, this paper presents a SAR motioncompensation algorithm based on the correction of residual attitude errors. The existing methods all use the antenna stableplatform to correct the attitude errors, and then compensate the trajectory deviations in the following imaging process. Besidescompensating the trajectory deviations, the modified method of this paper also considers the influence of residual attitude er-rors on the SAR imaging, and can compensate both the trajectory deviations and the residual attitude errors. Compared withthe existing methods, the modified method in this paper can more precisely compensate the imperfect motion on the SAR im-aging, especially good for the SAR system with a small platform, near operating distance and a narrow antenna beam. Such asystem causes severe residual attitude errors and needs to consider the influence of antenna beam pointing errors on the imag-ing. The validity of the modified method presented by this paper is demonstrated by the result of the experiment.展开更多
基金supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. 053Z170138)
文摘As residual attitude errors are likely to affect the synthetic aperture radar (SAR) imaging, this paper presents a SAR motioncompensation algorithm based on the correction of residual attitude errors. The existing methods all use the antenna stableplatform to correct the attitude errors, and then compensate the trajectory deviations in the following imaging process. Besidescompensating the trajectory deviations, the modified method of this paper also considers the influence of residual attitude er-rors on the SAR imaging, and can compensate both the trajectory deviations and the residual attitude errors. Compared withthe existing methods, the modified method in this paper can more precisely compensate the imperfect motion on the SAR im-aging, especially good for the SAR system with a small platform, near operating distance and a narrow antenna beam. Such asystem causes severe residual attitude errors and needs to consider the influence of antenna beam pointing errors on the imag-ing. The validity of the modified method presented by this paper is demonstrated by the result of the experiment.