Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation.However,in clinical practice,loss of low-frequency residual hearing often occurs a...Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation.However,in clinical practice,loss of low-frequency residual hearing often occurs after cochlear implantation and its mechanisms remain unclear.Factors affecting lowfrequency residual hearing after cochlear implantation are one of the hot spots in current research.Inflammation induced by injury associated with cochlear implantation is deemed to be significant,as it may give rise to low-frequency residual hearing loss by interfering with the blood labyrinth barrier and neural synapses.Pathological changes along the pathway for low-frequency auditory signals transmission may include latent factors such as damage to neuroepithelial structures,synapses,stria vascularis and other ultrastructures.In this review,current research on mechanisms of low-frequency residual hearing loss after cochlear implantation and possible roles of inflammatory responses are summarized.展开更多
An mvestigation and analysis of 229 deal-mute children revealed that 54.2% of ac-quired deafness were mused by ototoxic aminoglycoside drugs.There is an upward trend of the oc-cunence of the disease in the recent yea...An mvestigation and analysis of 229 deal-mute children revealed that 54.2% of ac-quired deafness were mused by ototoxic aminoglycoside drugs.There is an upward trend of the oc-cunence of the disease in the recent years and more attention should be paid to it.The result ofpure tone audiometry showed that more than 90.4% of deaf-mute children had some residualhearing.Twenty-six deal-mute children whose average hearing thresholds of speech frequency werebetter them 90dB(HL)had serviceable speech for daily use 3 after 3 to 18 months’ speech Warn-ing,and 4 of them were transferred to ordinary primary schools.The authors are of the opinionthat the deaf-mute children should use heating-aids as early as possible so as to promote theirspeech.展开更多
Non-syndromic low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of hearing loss in which frequencies ≤2000 Hz predominantly are affected. To date, different mutations in two genes, DIAPHI and WFS...Non-syndromic low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of hearing loss in which frequencies ≤2000 Hz predominantly are affected. To date, different mutations in two genes, DIAPHI and WFSI, have been found to be associated with LFSNHL. Here, we report a five-generation Chinese family with postlingual and progressive LFSNHL. We mapped the disease locus to a 2.5 Mb region on chromosome 4p16 between markers SNP_A-2167174 and D4S431, overlapping with the DFNA6/14/38 locus. Sequencing of candidate gene revealed a heterozygous c.2086C〉T substitution in exon 8 of WFS1, leading to p.H696Y substitution at the C-terminus of Wolframin (WFS 1). In addition, we performed mutational screening of WFS1 in 37 sporadic patients, 7--50 years of age, with LFSNHL. We detected a heterozygous c.2108G〉A substitution in exon 8 of WFSI, leading to p.R703H substitution in a patient. The H696 and R703 in WFS1 are highly conserved across species, including human, orangutan, rat, mouse, and frog (Xenopus), Sequence analysis demonstrated the absence of c.2086C〉T or c.210gG〉A substitutions in the WFS1 genes among 200 unrelated control subjects of Chinese background, supporting the hypothesis that they represent causative mutations, and not rare polymorphisms. Our data provide additional molecular and clinical information for establishing a better genotype-phenotype correlation for LFSNHL.展开更多
目的探讨多种听力学检测方法在听性脑干反应(ABR)最大输出未引出患儿的听力学诊断中的应用价值。方法回顾性分析69例(138耳)ABR最大强度未引出患儿的临床资料,年龄42天到5岁,平均1岁6个月,鼓室导抗图均为A型或正向单峰,声反射均未引出,...目的探讨多种听力学检测方法在听性脑干反应(ABR)最大输出未引出患儿的听力学诊断中的应用价值。方法回顾性分析69例(138耳)ABR最大强度未引出患儿的临床资料,年龄42天到5岁,平均1岁6个月,鼓室导抗图均为A型或正向单峰,声反射均未引出,影像学检查内耳无畸形。69例患儿均进行ABR、耳蜗微音电位(CM)、畸变产物耳声发射(DPOAE)和听性稳态反应(ASSR)测试。结果69例138耳中,8例16耳(11.59%)记录到CM,其中10耳(7.25%)记录到DPOAE,0.5、1、2、4 kHz ASSR反应阈值分别为83.2±13.1、82.9±13.0、75.3±12.4、63.1±9.1 dB nHL,结合其他检查结果诊断为听神经病。余61例(122耳)CM和DPOAE均未引出,0.5、1、2、4 kHz的ASSR引出率分别为82.3%、81.9%、76.9%、60.2%,其中20耳ASSR各频率均未引出,102耳至少一个频率引出,0.5、1、2、4 kHz ASSR反应阈分别为93.2±6.1、99.8±7.0、105.4±5.4、108.2±9.8 dB nHL,诊断为极重度感音神经性聋。结论对于ABR最大输出强度未引出的患儿,CM和/或DPOAE引出且ASSR各频率反应阈低于感音神经性聋患儿,有助于听神经病的诊断;CM和DPOAE均未引出有助于极重度感音神经性聋的诊断,ASSR测试有助于评估其残余听力。展开更多
文摘Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation.However,in clinical practice,loss of low-frequency residual hearing often occurs after cochlear implantation and its mechanisms remain unclear.Factors affecting lowfrequency residual hearing after cochlear implantation are one of the hot spots in current research.Inflammation induced by injury associated with cochlear implantation is deemed to be significant,as it may give rise to low-frequency residual hearing loss by interfering with the blood labyrinth barrier and neural synapses.Pathological changes along the pathway for low-frequency auditory signals transmission may include latent factors such as damage to neuroepithelial structures,synapses,stria vascularis and other ultrastructures.In this review,current research on mechanisms of low-frequency residual hearing loss after cochlear implantation and possible roles of inflammatory responses are summarized.
文摘An mvestigation and analysis of 229 deal-mute children revealed that 54.2% of ac-quired deafness were mused by ototoxic aminoglycoside drugs.There is an upward trend of the oc-cunence of the disease in the recent years and more attention should be paid to it.The result ofpure tone audiometry showed that more than 90.4% of deaf-mute children had some residualhearing.Twenty-six deal-mute children whose average hearing thresholds of speech frequency werebetter them 90dB(HL)had serviceable speech for daily use 3 after 3 to 18 months’ speech Warn-ing,and 4 of them were transferred to ordinary primary schools.The authors are of the opinionthat the deaf-mute children should use heating-aids as early as possible so as to promote theirspeech.
基金supported by the National High Technology Research and Development Program of China(863 Program) to Huijun Yuan(No.2007AA02E466)Key Project of National Natural Science Foundation of China to Huijun Yuan (No.81030017)and to Pu Dai(No.30872862)
文摘Non-syndromic low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of hearing loss in which frequencies ≤2000 Hz predominantly are affected. To date, different mutations in two genes, DIAPHI and WFSI, have been found to be associated with LFSNHL. Here, we report a five-generation Chinese family with postlingual and progressive LFSNHL. We mapped the disease locus to a 2.5 Mb region on chromosome 4p16 between markers SNP_A-2167174 and D4S431, overlapping with the DFNA6/14/38 locus. Sequencing of candidate gene revealed a heterozygous c.2086C〉T substitution in exon 8 of WFS1, leading to p.H696Y substitution at the C-terminus of Wolframin (WFS 1). In addition, we performed mutational screening of WFS1 in 37 sporadic patients, 7--50 years of age, with LFSNHL. We detected a heterozygous c.2108G〉A substitution in exon 8 of WFSI, leading to p.R703H substitution in a patient. The H696 and R703 in WFS1 are highly conserved across species, including human, orangutan, rat, mouse, and frog (Xenopus), Sequence analysis demonstrated the absence of c.2086C〉T or c.210gG〉A substitutions in the WFS1 genes among 200 unrelated control subjects of Chinese background, supporting the hypothesis that they represent causative mutations, and not rare polymorphisms. Our data provide additional molecular and clinical information for establishing a better genotype-phenotype correlation for LFSNHL.
文摘目的探讨多种听力学检测方法在听性脑干反应(ABR)最大输出未引出患儿的听力学诊断中的应用价值。方法回顾性分析69例(138耳)ABR最大强度未引出患儿的临床资料,年龄42天到5岁,平均1岁6个月,鼓室导抗图均为A型或正向单峰,声反射均未引出,影像学检查内耳无畸形。69例患儿均进行ABR、耳蜗微音电位(CM)、畸变产物耳声发射(DPOAE)和听性稳态反应(ASSR)测试。结果69例138耳中,8例16耳(11.59%)记录到CM,其中10耳(7.25%)记录到DPOAE,0.5、1、2、4 kHz ASSR反应阈值分别为83.2±13.1、82.9±13.0、75.3±12.4、63.1±9.1 dB nHL,结合其他检查结果诊断为听神经病。余61例(122耳)CM和DPOAE均未引出,0.5、1、2、4 kHz的ASSR引出率分别为82.3%、81.9%、76.9%、60.2%,其中20耳ASSR各频率均未引出,102耳至少一个频率引出,0.5、1、2、4 kHz ASSR反应阈分别为93.2±6.1、99.8±7.0、105.4±5.4、108.2±9.8 dB nHL,诊断为极重度感音神经性聋。结论对于ABR最大输出强度未引出的患儿,CM和/或DPOAE引出且ASSR各频率反应阈低于感音神经性聋患儿,有助于听神经病的诊断;CM和DPOAE均未引出有助于极重度感音神经性聋的诊断,ASSR测试有助于评估其残余听力。